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SCIENCE “In these lectures, everything you’ve ever heard about Feynman’s wit and 

genius comes through.”   —John Horgan, author of The End of Science

I t was Feynman’s outrageous and scintillating method of teaching that earned him 

legendary status among students and professors of physics. From 1961 to 1963, 

Feynman delivered a series of lectures at the California Institute of Technology that 

revolutionized the teaching of physics around the world. Six Not-So-Easy Pieces, taken 

from these famous Lectures on Physics, represent some of the most stimulating material 

from the series. 

In the challenging Six Not-So-Easy Pieces, Feynman delves into one of the most 

revolutionary discoveries in twentieth-century physics: Einstein’s theory of relativity. The 

idea that the flow of time is not constant, that the mass of an object depends on its velocity, 

and that the speed of light is a constant no matter what the motion of the observer, at first 

seemed shocking to scientists and laymen alike. But as Feynman shows so clearly in these 

lectures, these tricky ideas are not merely dry principles of physics, but things of beauty 

and elegance.

No one—not even Einstein himself—explained these difficult, anti-intuitive concepts 

more clearly, or with more verve and gusto, than Richard Feynman. Filled with wonderful 

examples and clever illustrations, Six Not-So-Easy Pieces is the ideal introduction to the 

fundamentals of physics by one of the most admired and accessible physicists of all time.

“Want to really understand why time slows, mass increases and length contracts as 

something approaches light speed, why space has just got to be curved and 

why it is not only impossible to predict the future, but actually there is 

no fortune teller who can even tell us the present? . . . Sure this is hard  

stuff—the cerebral equivalent of high-impact aerobics . . . but there is 

no better explanation for the scientifically literate layman. . . . Just do it.”                                                              

                                                                      —The Washington Post Book World

The late Richard P. Feynman (1918–1988) was Richard Chace Tolman Professor of 

Theoretical Physics at the California Institute of Technology. He was awarded the 1965 

Nobel Prize for his work on the development of quantum field theory. He was also one of 

the most famous and beloved figures of the twentieth century, both in physics and in the 

public arena.

www.BasicFeynman.com

ISBN 978-0-465-02526-8

9 7 8 0 4 6 5 0 2 5 2 6 8

5 1 4 9 9

$14.99 US / $17.50 CAN

Richard P. Feynman

6
E i n s t e i n ’ s  R e l a t i v i t y ,

S y m m e t r y ,  a n d  S p a c e - T i m e



S I X  N O T- S O - E A S Y  P I E C E S

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page i



A l s o  b y  R i c h a r d  P.  F e y n m a n

The Character of Physical Law

Elementary Particles and the Laws of Physics:
The 1986 Dirac Memorial Lectures (with Steven Weinberg)

Feynman Lectures on Computation
(edited by Anthony J. G. Hey and Robin Allen)

Feynman Lectures on Gravitation (with Fernando B. Morinigo and
William G. Wagner; edited by Brian Hatfield)

The Feynman Lectures on Physics
(with Robert B. Leighton and Matthew Sands)

The Meaning of It All: Thoughts of a Citizen-Scientist

Photon-Hadron Interactions

Perfectly Reasonable Deviations from the Beaten Track:
The Letters of Richard P. Feynman

The Pleasure of Finding Things Out:
The Best Short Works of Richard P. Feynman

QED: The Strange Theory of Light and Matter

Quantum Mechanics and Path Integrals (with A. R. Hibbs)

Six Easy Pieces:
Essentials of Physics Explained by Its Most Brilliant Teacher

Statistical Mechanics: A Set of Lectures

Surely You’re Joking, Mr. Feynman!
Adventures of a Curious Character (with Ralph Leighton)

The Theory of Fundamental Processes

What Do You Care What Other People Think?
Further Adventures of a Curious Character

(with Ralph Leighton)

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page ii



S I X  
N O T- S O - E A S Y  

P I E C E S

Einste in’s  Relat iv i ty,  
Symmetry,  and Space-Time

R I C H A R D  P.  F E Y N M A N

with

Robe r t  B .  L e i gh t on  
and

Mat thew  Sand s

Introduction by

Roge r  Pen ro se

A Member of the Perseus Books Group
New York

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page iii



Copyright © 1963, 1989, 1997, 2011 by the California 
Institute of Technology
Introduction copyright © 1997 by Roger Penrose

Published by Basic Books,
A Member of the Perseus Books Group

All text and cover photographs are courtesy of the Archives, California
Institute of Technology, except for the photograph on page 92, which
is courtesy of the Archives, California Institute of Technology/York-
shire Television.

All rights reserved. Printed in the United States of America. No part of
this book may be reproduced in any manner whatsoever without writ-
ten permission except in the case of brief quotations embodied in criti-
cal articles and reviews. For information, address Basic Books, 387
Park Avenue South, New York, NY 10016-8810.

Books published by Basic Books are available at special discounts for
bulk purchases in the United States by corporations, institutions, and
other organizations. For more information, please contact the Special
Markets Department at the Perseus Books Group, 2300 Chestnut
Street, Suite 200, Philadelphia, PA 19103, or call (800) 810-4145, ext.
5000, or e-mail special.markets@perseusbooks.com.

Library of Congress Control Number: 2010941329
ISBN: 978-0-465-02526-8
E-book ISBN: 978-0-465-02528-2

10 9 8 7 6 5 4 3 2 1

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page iv



C O N T E N T S

Publisher’s Note vii
Introduction by Roger Penrose ix
Special Preface xvii
Feynman’s Preface xxiii

ONE: Vectors 1
1-1 Symmetry in physics 1
1-2 Translations 2
1-3 Rotations 5
1-4 Vectors 9
1-5 Vector algebra 12
1-6 Newton’s laws in vector notation 15
1-7 Scalar product of vectors 18

TWO: Symmetry in Physical Laws 23
2-1 Symmetry operations 23
2-2 Symmetry in space and time 24
2-3 Symmetry and conservation laws 29
2-4 Mirror reflections 30
2-5 Polar and axial vectors 35
2-6 Which hand is right? 38
2-7 Parity is not conserved! 40
2-8 Antimatter 43
2-9 Broken symmetries 46

THREE: The Special Theory of Relativity 49
3-1 The principle of relativity 49
3-2 The Lorentz transformation 53

v

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page v



3-3 The Michelson-Morley experiment 54
3-4 Transformation of time 59
3-5 The Lorentz contraction 63
3-6 Simultaneity 63
3-7 Four-vectors 65
3-8 Relativistic dynamics 66
3-9 Equivalence of mass and energy 68

FOUR: Relativistic Energy and Momentum 73
4-1 Relativity and the philosophers 73
4-2 The twin paradox 77
4-3 Transformation of velocities 79
4-4 Relativistic mass 83
4-5 Relativistic energy 88

FIVE: Space-Time 93
5-1 The geometry of space-time 93
5-2 Space-time intervals 97
5-3 Past, present, and future 99
5-4 More about four-vectors 102
5-5 Four-vector algebra 106

SIX: Curved Space 111
6-1 Curved spaces with two dimensions 111
6-2 Curvature in three-dimensional space 123
6-3 Our space is curved 125
6-4 Geometry in space-time 128
6-5 Gravity and the principle of equivalence 129
6-6 The speed of clocks in a gravitational field 131
6-7 The curvature of space-time 137
6-8 Motion in curved space-time 137
6-9 Einstein’s theory of gravitation 141

Index 145
About Richard Feynman 153

vi

Contents

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page vi



P U B L I S H E R ’ S  N O T E

The unqualified success and popularity of Six Easy Pieces sparked a
clamor, from the general public, students, and professional scien-
tists alike, for more Feynman in book and audio. So we went back
to the original The Feynman Lectures on Physics and to the Archives
at Caltech to see if there were more “easy” pieces. There were not.
But there were many not-so-easy lectures that, although they contain
some mathematics, are not too difficult for beginning science stu-
dents; and for the student and the layperson, these six lectures are
every bit as thrilling, as absorbing, and as much fun as the first six.

Another difference between these not-so-easy pieces and the first
six is that the topics of the first six spanned several fields of physics,
from mechanics to thermodynamics to atomic physics. These new
six pieces you hold in your hand, however, are focused around a
subject which has evoked many of the most revolutionary discov-
eries and amazing theories of modern physics, from black holes to
worm holes, from atomic energy to time warps; we are talking, of
course, about Relativity. But even the great Einstein himself, the
father of Relativity, could not explain the wonders, workings, and
fundamental concepts of his own theory as well as could that guy
from Noo Yawk, Richard P. Feynman, as reading the chapters or
listening to the CDs will prove to you.

We wish to thank Roger Penrose for his penetrating Introduc-
tion to this collection; Brian Hatfield and David Pines for their in-
valuable advice in the selection of the six lectures; and the
California Institute of Technology’s Physics Department and Insti-
tute Archives, in particular Judith Goodstein, for helping to make
this book/CD project happen.
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I N T R O D U C T I O N

To understand why Richard Feynman was such a great teacher, it
is important to appreciate his remarkable stature as a scientist. He
was indeed one of the outstanding figures of twentieth-century the-
oretical physics. His contributions to that subject are central to the
whole development of the particular way in which quantum theory
is used in current cutting-edge research and thus to our present-
day pictures of the world. The Feynman path integrals, Feynman
diagrams, and Feynman rules are among the very basic tools of the
modern theoretical physicist—tools that are necessary for the ap-
plication of the rules of quantum theory to physical fields (e.g., the
quantum theory of electrons, protons, and photons), and which
form an essential part of the procedures whereby one makes these
rules consistent with the requirements of Einstein’s Special Relativ-
ity theory. Although none of these ideas is easy to appreciate, Feyn-
man’s particular approach always had a deep clarity about it,
sweeping away unnecessary complications in what had gone before.
There was a close link between his special ability to make progress
in research and his particular qualities as a teacher. He had a unique
talent that enabled him to cut through the complications that often
obscure the essentials of a physical issue and to see clearly into the
deep underlying physical principles.

Yet, in the popular conception of Feynman, he is known more
for his antics and buffoonery, for his practical jokes, his irreverence
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towards authority, his bongo-drum performing, his relationships
with women, both deep and shallow, his attendance at strip clubs,
his attempts, late in life, to reach the obscure country of Tuva in
central Asia, and many other schemes. Undoubtedly, he must have
been extraordinarily clever, as his lightning quickness at calculation,
his exploits involving safe-cracking, outwitting security services,
deciphering ancient Mayan texts—not to mention his eventual
Nobel Prize—clearly demonstrate. Yet none of this quite conveys
the status that he unquestionably has amongst physicists and other
scientists, as one of the deepest and most original thinkers of this
century.

The distinguished physicist and writer Freeman Dyson, an early
collaborator of Feynman’s at a time when he was developing his
most important ideas, wrote in a letter to his parents in England
in the spring of 1948, when Dyson was a graduate student at Cor-
nell University, “Feynman is the young American professor, half
genius and half buffoon, who keeps all physicists and their children
amused with his effervescent vitality. He has, however, as I have re-
cently learned, a great deal more to him than that. . . .” Much later,
in 1988, he would write: “A truer description would have said that
Feynman was all genius and all buffoon. The deep thinking and
the joyful clowning were not separate parts of a split personality. . . .
He was thinking and clowning simultaneously.”* Indeed, in his lec-
tures, his wit was spontaneous, and often outrageous. Through it
he held his audiences’ attention, but never in a way that would dis-
tract from the purpose of the lecture, which was the conveying of
genuine and deep physical understanding. Through laughter, his
audiences could relax and be at ease, rather than feel daunted by
what might otherwise be somewhat intimidating mathematical ex-
pressions and physical concepts that are tantalizingly difficult to
grasp. Yet, although he enjoyed being center stage and was un-
doubtedly a showman, this was not the purpose of his expositions.

* The Dyson quotations are to be found in his book From Eros to Gaia (Pantheon
Books, New York, 1992), pages 325 and 314, respectively.
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That purpose was to convey some basic understanding of underly-
ing physical ideas and of the essential mathematical tools that are
needed in order to express these ideas properly.

Whereas laughter played a key part of his success in holding an
audience’s attention, more important to the conveying of under-
standing was the immediacy of his approach. Indeed, he had an ex-
traordinarily direct no-nonsense style. He scorned airy-fairy
philosophizing where it had little physical content. Even his atti-
tude to mathematics was somewhat similar. He had little use for
pedantic mathematical niceties, but he had a distinctive mastery of
the mathematics that he needed, and could present it in a power-
fully transparent way. He was beholden to no one, and would never
take on trust what others might maintain to be true without himself
coming to an independent judgment. Accordingly, his approach
was often strikingly original whether in his research or teaching.
And when Feynman’s way differed significantly from what had gone
before, it would be a reasonably sure bet that Feynman’s approach
would be the more fruitful one to follow.

Feynman’s preferred method of communication was verbal. He
did not easily, or often, commit himself to the printed word. In his
scientific papers, the special “Feynman” qualities would certainly
come through, though in a somewhat muted form. It was in his
lectures that his talents were given full reign. His exceedingly pop-
ular “Feynman Lectures” were basically edited transcripts (by
Robert B. Leighton and Matthew Sands) of lectures that Feynman
gave, and the compelling nature of the text is evident to anyone
who reads it. The Six Not-So-Easy Pieces that are presented here are
taken from those accounts. Yet, even here, the printed words alone
leave something significantly missing. To sense the full excitement
that Feynman’s lectures exude, I believe that it is important to hear
his actual voice. The directness of Feynman’s approach, the irrev-
erence, and the humor then become things that we can immedi-
ately share in. Fortunately, there are recordings of all the lectures
presented in this book, which give us this opportunity—and I
strongly recommend, if the opportunity is there, that at least some
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of these audio versions are listened to first. Once we have heard
Feynman’s forceful, enthralling, and witty commentary, in the tones
of this streetwise New Yorker, we do not forget how he sounds, and
it gives us an image to latch on to when we read his words. But
whether we actually read the chapters or not, we can share some-
thing of the evident thrill that he himself feels as he explores—
and continually re-explores—the extraordinary laws that govern
the workings of our universe.

The present series of six lectures was carefully chosen to be of a
level a little above the six that formed the earlier set of Feynman
lectures entitled Six Easy Pieces (published by Addison Wesley
Longman in 1995). Moreover, they go well together and constitute
a superb and compelling account of one of the most important gen-
eral areas of modern theoretical physics.

This area is relativity, which first burst forth into human aware-
ness in the early years of this century. The name of Einstein figures
preeminently in the public conception of this field. It was, indeed,
Albert Einstein who, in 1905, first clearly enunciated the profound
principles which underlie this new realm of physical endeavor. But
there were others before him, most notably Hendrik Antoon
Lorentz and Henri Poincaré, who had already appreciated most of
the basics of the (then) new physics. Moreover, the great scientists
Galileo Galilei and Isaac Newton, centuries before Einstein, had
already pointed out that in the dynamical theories that they them-
selves were developing, the physics as perceived by an observer in
uniform motion would be identical with that perceived by an ob-
server at rest. The key problem with this had arisen only later, with
James Clerk Maxwell’s discovery, as published in 1865, of the
equations that govern the electric and magnetic fields, and which
also control the propagation of light. The implication seemed to
be that the relativity principle of Galileo and Newton could no
longer hold true; for the speed of light must, by Maxwell’s equa-
tions, have a definite speed of propagation. Accordingly, an ob-
server at rest is distinguished from those in motion by the fact that
only to an observer at rest does the light speed appear to be the
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same in all directions. The relativity principle of Lorentz, Poincaré,
and Einstein differs from that of Galileo and Newton, but it has
this same implication: the physics as perceived by an observer in
uniform motion is indeed identical with that perceived by an ob-
server at rest.

Yet, in the new relativity, Maxwell’s equations are consistent with
this principle, and the speed of light is measured to have a definite
fixed value in every direction, no matter in what direction or with
what speed the observer might be moving. How is this magic
achieved so that these apparently hopelessly incompatible require-
ments are reconciled? I shall leave it to Feynman to explain—in his
own inimitable fashion.

Relativity is perhaps the first place where the physical power of
the mathematical idea of symmetry begins to be felt. Symmetry is a
familiar idea, but it is less familiar to people how such an idea can
be applied in accordance with a set of mathematical expressions.
But it is just such a thing that is needed in order to implement the
principles of special relativity in a system of equations. In order to
be consistent with the relativity principle, whereby physics “looks
the same” to an observer in uniform motion as to an observer at
rest, there must be a “symmetry transformation” which translates
one observer’s measured quantities into those of the other. It is a
symmetry because the physical laws appear the same to each ob-
server, and “symmetry,” after all, asserts that something has the
same appearance from two distinct points of view. Feynman’s ap-
proach to abstract matters of this nature is very down to earth, and
he is able to convey the ideas in a way that is accessible to people
with no particular mathematical experience or aptitude for abstract
thinking.

Whereas relativity pointed the way to additional symmetries that
had not been perceived before, some of the more modern develop-
ments in physics have shown that certain symmetries, previously
thought to be universal, are in fact subtly violated. It came as one
of the most profound shocks to the physical community in 1957,
as the work of Lee, Yang, and Wu showed, that in certain basic
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physical processes, the laws satisfied by a physical system are not
the same as those satisfied by the mirror reflection of that system.
In fact, Feynman had a hand in the development of the physical
theory which is able to accommodate this asymmetry. His account
here is, accordingly, a dramatic one, as deeper and deeper mysteries
of nature gradually unfold.

As physics develops, there are mathematical formalisms that de-
velop with it, and which are needed in order to express the new
physical laws. When the mathematical tools are skillfully tuned to
their appropriate tasks, they can make the physics seem much sim-
pler than otherwise. The ideas of vector calculus are a case in point.
The vector calculus of three dimensions was originally developed
to handle the physics of ordinary space, and it provides an invalu-
able piece of machinery for the expression of physical laws, such as
those of Newton, where there is no physically preferred direction
in space. To put this another way, the physical laws have a symmetry
under ordinary rotations in space. Feynman brings home the power
of the vector notation and the underlying ideas for expressing such
laws.

Relativity theory, however, tells us that time should also be
brought under the compass of these symmetry transformations, so
a four-dimensional vector calculus is needed. This calculus is also
introduced to us here by Feynman, as it provides the way of un-
derstanding how not only time and space must be considered as
different aspects of the same four-dimensional structure, but the
same is true of energy and momentum in the relativistic scheme.

The idea that the history of the universe should be viewed,
physically, as a four-dimensional space-time, rather than as a three-
dimensional space evolving with time is indeed fundamental to
modern physics. It is an idea whose significance is not easy to grasp.
Indeed, Einstein himself was not sympathetic to this idea when he
first encountered it. The idea of space-time was not, in fact, Ein-
stein’s, although, in the popular imagination it is frequently attrib-
uted to him. It was the Russian/German geometer Hermann
Minkowski, who had been a teacher of Einstein’s at the Zurich
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Polytechnic, who first put forward the idea of four-dimensional
space-time in 1908, a few years after Poincaré and Einstein had for-
mulated special relativity theory. In a famous lecture, Minkowski
asserted: “Henceforth space by itself, and time by itself, are doomed
to fade away into mere shadows, and only a kind of unity between
the two will preserve an independent reality.”*

Feynman’s most influential scientific discoveries, the ones that I
have referred to above, stemmed from his own space-time approach
to quantum mechanics. There is thus no question about the im-
portance of space-time to Feynman’s work and to modern physics
generally. It is not surprising, therefore, that Feynman is forceful
in his promotion of space-time ideas, stressing their physical sig-
nificance. Relativity is not airy-fairy philosophy, nor is space-time
mere mathematical formalism. It is a foundational ingredient of
the very universe in which we live.

When Einstein became accustomed to the idea of space-time,
he took it completely into his way of thinking. It became an essen-
tial part of his extension of special relativity—the relativity theory
I have been referring to above that Lorentz, Poincaré, and Einstein
introduced—to what is known as general relativity. In Einstein’s
general relativity, the space-time becomes curved, and it is able to
incorporate the phenomenon of gravity into this curvature. Clearly,
this is a difficult idea to grasp, and in Feynman’s final lecture in this
collection, he makes no attempt to describe the full mathematical
machinery that is needed for the complete formulation of Einstein’s
theory. Yet he gives a powerfully dramatic description, with insight-
ful use of intriguing analogies, in order to get the essential ideas
across.

In all his lectures, Feynman made particular efforts to preserve
accuracy in his descriptions, almost always qualifying what he says
when there was any danger that his simplifications or analogies

* The Minkowski quote is from the Dover reprint of seminal publications on rel-
ativity The Principle of Relativity by Einstein, Lorentz, Weyl, and Minkowski (orig-
inally Methuen and Co., 1923).
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might be misleading or lead to erroneous conclusions. I felt, how-
ever, that his simplified account of the Einstein field equation of
general relativity did need a qualification that he did not quite give.
For in Einstein’s theory, the “active” mass which is the source of
gravity is not simply the same as the energy (according to Einstein’s
E=mc2); instead, this source is the energy density plus the sum of
the pressures, and it is this that is the source of gravity’s inward ac-
celerations. With this additional qualification, Feynman’s account
is superb, and provides an excellent introduction to this most beau-
tiful and self-contained of physical theories.

While Feynman’s lectures are unashamedly aimed at those who
have aspirations to become physicists—whether professionally or in
spirit only—they are undoubtedly accessible also to those with no
such aspirations. Feynman strongly believed (and I agree with him)
in the importance of conveying an understanding of our universe—
according to the perceived basic principles of modern physics—far
more widely than can be achieved merely by the teaching provided
in physics courses. Even late in his life, when taking part in the in-
vestigations of the Challenger disaster, he took great pains to show,
on national television, that the source of the disaster was something
that could be appreciated at an ordinary level, and he performed a
simple but convincing experiment on camera showing the brittle-
ness of the shuttle’s O-rings in cold conditions.

He was a showman, certainly, sometimes even a clown; but his
overriding purpose was always serious. And what more serious pur-
pose can there be than the understanding of the nature of our uni-
verse at its deepest levels? At conveying this understanding, Richard
Feynman was supreme.

December 1996 Roger Penrose

xvi

Introduction

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page xvi



S P E C I A L  P R E FA C E
(from The Feynman Lectures on Physics)

Toward the end of his life, Richard Feynman’s fame had transcended
the confines of the scientific community. His exploits as a member
of the commission investigating the space shuttle Challenger disaster
gave him widespread exposure; similarly, a best-selling book about
his picaresque adventures made him a folk hero almost of the pro-
portions of Albert Einstein. But back in 1961, even before his
Nobel Prize increased his visibility to the general public, Feynman
was more than merely famous among members of the scientific
community—he was legendary. Undoubtedly, the extraordinary
power of his teaching helped spread and enrich the legend of
Richard Feynman.

He was a truly great teacher, perhaps the greatest of his era and
ours. For Feynman, the lecture hall was a theater, and the lecturer
a performer, responsible for providing drama and fireworks as well
as facts and figures. He would prowl about the front of a classroom,
arms waving, “the impossible combination of theoretical physicist
and circus barker, all body motion and sound effects,” wrote The
New York Times. Whether he addressed an audience of students,
colleagues, or the general public, for those lucky enough to see
Feynman lecture in person, the experience was usually unconven-
tional and always unforgettable, like the man himself.

He was the master of high drama, adept at riveting the attention
of every lecture-hall audience. Many years ago, he taught a course
in Advanced Quantum Mechanics, a large class comprised of a few

xvii

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page xvii



registered graduate students and most of the Caltech physics fac-
ulty. During one lecture, Feynman started explaining how to rep-
resent certain complicated integrals diagrammatically: time on this
axis, space on that axis, wiggly line for this straight line, etc. Having
described what is known to the world of physics as a Feynman di-
agram, he turned around to face the class, grinning wickedly. “And
this is called THE diagram!” Feynman had reached the denoue-
ment, and the lecture hall erupted with spontaneous applause.

For many years after the lectures that make up this book were
given, Feynman was an occasional guest lecturer for Caltech’s fresh-
man physics course. Naturally, his appearances had to be kept secret
so there would be room left in the hall for the registered students.
At one such lecture the subject was curved space-time, and Feyn-
man was characteristically brilliant. But the unforgettable moment
came at the beginning of the lecture. The supernova of 1987 had
just been discovered, and Feynman was very excited about it. He
said, “Tycho Brahe had his supernova, and Kepler had his. Then
there weren’t any for 400 years. But now I have mine.” The class
fell silent, and Feynman continued on. “There are 1011 stars in the
galaxy. That used to be a huge number. But it’s only a hundred bil-
lion. It’s less than the national deficit! We used to call them astro-
nomical numbers. Now we should call them economical numbers.”
The class dissolved in laughter, and Feynman, having captured his
audience, went on with his lecture.

Showmanship aside, Feynman’s pedagogical technique was
simple. A summation of his teaching philosophy was found among
his papers in the Caltech Archives, in a note he had scribbled to
himself while in Brazil in 1952:

First figure out why you want the students to learn the subject
and what you want them to know, and the method will result
more or less by common sense.

What came to Feynman by “common sense” were often brilliant
twists that perfectly captured the essence of his point. Once, during

xviii
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a public lecture, he was trying to explain why one must not verify
an idea using the same data that suggested the idea in the first place.
Seeming to wander off the subject, Feynman began talking about
license plates. “You know, the most amazing thing happened to me
tonight. I was coming here, on the way to the lecture, and I came
in through the parking lot. And you won’t believe what happened.
I saw a car with the license plate ARW 357. Can you imagine? Of
all the millions of license plates in the state, what was the chance
that I would see that particular one tonight? Amazing!” A point
that even many scientists fail to grasp was made clear through Feyn-
man’s remarkable “common sense.”

In 35 years at Caltech (from 1952 to 1987), Feynman was listed
as teacher of record for 34 courses. Twenty-five of them were ad-
vanced graduate courses, strictly limited to graduate students, un-
less undergraduates asked permission to take them (they often did,
and permission was nearly always granted). The rest were mainly
introductory graduate courses. Only once did Feynman teach
courses purely for undergraduates, and that was the celebrated oc-
casion in the academic years 1961 to 1962 and 1962 to 1963, with
a brief reprise in 1964, when he gave the lectures that were to be-
come The Feynman Lectures on Physics.

At the time there was a consensus at Caltech that freshman and
sophomore students were getting turned off rather than spurred on
by their two years of compulsory physics. To remedy the situation,
Feynman was asked to design a series of lectures to be given to the
students over the course of two years, first to freshmen, and then
to the same class as sophomores. When he agreed, it was immedi-
ately decided that the lectures should be transcribed for publication.
That job turned out to be far more difficult than anyone had imag-
ined. Turning out publishable books required a tremendous
amount of work on the part of his colleagues, as well as Feynman
himself, who did the final editing of every chapter.

And the nuts and bolts of running a course had to be addressed.
This task was greatly complicated by the fact that Feynman had
only a vague outline of what he wanted to cover. This meant that
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no one knew what Feynman would say until he stood in front of a
lecture hall filled with students and said it. The Caltech professors
who assisted him would then scramble as best they could to handle
mundane details, such as making up homework problems.

Why did Feynman devote more than two years to revolutioniz-
ing the way beginning physics was taught? One can only speculate,
but there were probably three basic reasons. One is that he loved
to have an audience, and this gave him a bigger theater than he
usually had in graduate courses. The second was that he genuinely
cared about students, and he simply thought that teaching fresh-
men was an important thing to do. The third and perhaps most
important reason was the sheer challenge of reformulating physics,
as he understood it, so that it could be presented to young students.
This was his specialty, and was the standard by which he measured
whether something was really understood. Feynman was once asked
by a Caltech faculty member to explain why spin 1/2 particles obey
Fermi-Dirac statistics. He gauged his audience perfectly and said,
“I’ll prepare a freshman lecture on it.” But a few days later he re-
turned and said, “You know, I couldn’t do it. I couldn’t reduce it to
the freshman level. That means we really don’t understand it.”

This specialty of reducing deep ideas to simple, understandable
terms is evident throughout The Feynman Lectures on Physics, but
nowhere more so than in his treatment of quantum mechanics. To
aficionados, what he has done is clear. He has presented, to begin-
ning students, the path integral method, the technique of his own
devising that allowed him to solve some of the most profound prob-
lems in physics. His own work using path integrals, among other
achievements, led to the 1965 Nobel Prize that he shared with Ju-
lian Schwinger and Sin-Itero Tomanaga.

Through the distant veil of memory, many of the students and
faculty attending the lectures have said that having two years of
physics with Feynman was the experience of a lifetime. But that’s
not how it seemed at the time. Many of the students dreaded the
class, and as the course wore on, attendance by the registered stu-
dents started dropping alarmingly. But at the same time, more and
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more faculty and graduate students started attending. The room
stayed full, and Feynman may never have known he was losing
some of his intended audience. But even in Feynman’s view, his
pedagogical endeavor did not succeed. He wrote in the 1963 pref-
ace to the Lectures: “I don’t think I did very well by the students.”
Rereading the books, one sometimes seems to catch Feynman look-
ing over his shoulder, not at his young audience, but directly at his
colleagues, saying, “Look at that! Look how I finessed that point!
Wasn’t that clever?” But even when he thought he was explaining
things lucidly to freshmen or sophomores, it was not really they
who were able to benefit most from what he was doing. It was his
peers—scientists, physicists, and professors—who would be the
main beneficiaries of his magnificent achievement, which was noth-
ing less than to see physics through the fresh and dynamic perspec-
tive of Richard Feynman.

Feynman was more than a great teacher. His gift was that he was
an extraordinary teacher of teachers. If the purpose in giving The
Feynman Lectures on Physics was to prepare a roomful of undergrad-
uate students to solve examination problems in physics, he cannot
be said to have succeeded particularly well. Moreover, if the intent
was for the books to serve as introductory college textbooks, he
cannot be said to have achieved his goal. Nevertheless, the books
have been translated into ten foreign languages and are available in
four bilingual editions. Feynman himself believed that his most im-
portant contribution to physics would not be QED, or the theory
of superfluid helium, or polarons, or partons. His foremost contri-
bution would be the three red books of The Feynman Lectures on
Physics. That belief justifies this commemorative issue of these cel-
ebrated books.

David L. Goodstein
Gerry Neugebauer

April 1989 California Institute of Technology
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F E Y N M A N ’ S  P R E FA C E
(from The Feynman Lectures on Physics)

These are the lectures in physics that I gave last year and the year
before to the freshman and sophomore classes at Caltech. The lec-
tures are, of course, not verbatim—they have been edited, some-
times extensively and sometimes less so. The lectures form only part
of the complete course. The whole group of 180 students gathered
in a big lecture room twice a week to hear these lectures and then
they broke up into small groups of 15 to 20 students in recitation
sections under the guidance of a teaching assistant. In addition,
there was a laboratory session once a week.

The special problem we tried to get at with these lectures was to
maintain the interest of the very enthusiastic and rather smart stu-
dents coming out of the high schools and into Caltech. They have
heard a lot about how interesting and exciting physics is—the
theory of relativity, quantum mechanics, and other modern ideas.
By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new,
modern ideas presented to them. They were made to study inclined
planes, electrostatics, and so forth, and after two years it was quite
stultifying. The problem was whether or not we could make a
course which would save the more advanced and excited student
by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course,
but are very serious. I thought to address them to the most intelli-
gent in the class and to make sure, if possible, that even the most
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intelligent student was unable to completely encompass everything
that was in the lectures—by putting in suggestions of applications
of the ideas and concepts in various directions outside the main
line of attack. For this reason, though, I tried very hard to make all
the statements as accurate as possible, to point out in every case
where the equations and ideas fitted into the body of physics, and
how—when they learned more—things would be modified. I also
felt that for such students it is important to indicate what it is that
they should—if they are sufficiently clever—be able to understand
by deduction from what has been said before, and what is being
put in as something new. When new ideas came in, I would try
either to deduce them if they were deducible, or to explain that it
was a new idea which hadn’t any basis in terms of things they had
already learned and what was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew
something when they came out of high school—such things as geo-
metrical optics, simple chemistry ideas, and so on. I also didn’t see
that there was any reason to make the lectures in a definite order,
in the sense that I would not be allowed to mention something
until I was ready to discuss it in detail. There was a great deal of
mention of things to come, without complete discussions. These
more complete discussions would come later when the preparation
became more advanced. Examples are the discussions of induc-
tance, and of energy levels, which are at first brought in in a very
qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student,
I also wanted to take care of the fellow for whom the extra fireworks
and side applications are merely disquieting and who cannot be ex-
pected to learn most of the material in the lecture at all. For such
a student, I wanted there to be at least a central core or backbone
of material which he could get. Even if he didn’t understand every-
thing in a lecture, I hoped he wouldn’t get nervous. I didn’t expect
him to understand everything, but only the central and most direct
features. It takes, of course, a certain intelligence on his part to see
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which are the central theorems and central ideas, and which are the
more advanced side issues and applications which he may under-
stand only in later years.

In giving these lectures there was one serious difficulty: in the
way the course was given, there wasn’t any feedback from the stu-
dents to the lecturer to indicate how well the lectures were going
over. This is indeed a very serious difficulty, and I don’t know how
good the lectures really are. The whole thing was essentially an ex-
periment. And if I did it again I wouldn’t do it the same way—I
hope I don’t have to do it again! I think, though, that things worked
out—so far as the physics is concerned—quite satisfactorily in the
first year.

In the second year I was not so satisfied. In the first part of the
course, dealing with electricity and magnetism, I couldn’t think of
any really unique or different way of doing it—of any way that
would be particularly more exciting than the usual way of present-
ing it. So I don’t think I did very much in the lectures on electricity
and magnetism. At the end of the second year I had originally in-
tended to go on, after the electricity and magnetism, by giving some
more lectures on the properties of materials, but mainly to take
up things like fundamental modes, solutions of the diffusion equa-
tion, vibrating systems, orthogonal functions, . . . developing the
first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I
would go back to that original idea. But since it was not planned
that I would be giving these lectures again, it was suggested that it
might be a good idea to try to give an introduction to the quantum
mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can
wait until their third year for quantum mechanics. On the other
hand, the argument was made that many of the students in our
course study physics as a background for their primary interest in
other fields. And the usual way of dealing with quantum mechanics
makes that subject almost unavailable for the great majority of stu-
dents because they have to take so long to learn it. Yet, in its real

xxv

Feynman’s Preface

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page xxv



applications—especially in its more complex applications, such as
in electrical engineering and chemistry—the full machinery of the
differential equation approach is not actually used. So I tried to de-
scribe the principles of quantum mechanics in a way which
wouldn’t require that one first know the mathematics of partial dif-
ferential equations. Even for a physicist I think that is an interesting
thing to try to do—to present quantum mechanics in this reverse
fashion—for several reasons which may be apparent in the lectures
themselves. However, I think that the experiment in the quantum
mechanics part was not completely successful—in large part because
I really did not have enough time at the end (I should, for instance,
have had three or four more lectures in order to deal more com-
pletely with such matters as energy bands and the spatial dependence
of amplitudes). Also, I had never presented the subject this way be-
fore, so the lack of feedback was particularly serious. I now believe
the quantum mechanics should be given at a later time. Maybe I’ll
have a chance to do it again someday. Then I’ll do it right.

The reason there are no lectures on how to solve problems is be-
cause there were recitation sections. Although I did put in three
lectures in the first year on how to solve problems, they are not in-
cluded here. Also there was a lecture on inertial guidance which
certainly belongs after the lecture on rotating systems, but which
was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has suc-
ceeded. My own point of view—which, however, does not seem to
be shared by most of the people who worked with the students—
is pessimistic. I don’t think I did very well by the students. When
I look at the way the majority of the students handled the problems
on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen stu-
dents who—very surprisingly—understood almost everything in
all of the lectures, and who were quite active in working with the
material and worrying about the many points in an excited and in-
terested way. These people have now, I believe, a first-rate back-

xxvi

Feynman’s Preface

0465025268-Feynman_Layout 1  2/3/11  3:31 PM  Page xxvi



ground in physics—and they are, after all, the ones I was trying to
get at. But then, “The power of instruction is seldom of much effi-
cacy except in those happy dispositions where it is almost super-
fluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as
perhaps I did. I think one way we could help the students more
would be by putting more hard work into developing a set of prob-
lems which would elucidate some of the ideas in the lectures. Prob-
lems give a good opportunity to fill out the material of the lectures
and make more realistic, more complete, and more settled in the
mind the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of
education other than to realize that the best teaching can be done
only when there is a direct individual relationship between a stu-
dent and a good teacher—a situation in which the student discusses
the ideas, thinks about the things, and talks about the things. It’s
impossible to learn very much by simply sitting in a lecture, or even
by simply doing problems that are assigned. But in our modern
times we have so many students to teach that we have to try to find
some substitute for the ideal. Perhaps my lectures can make some
contribution. Perhaps in some small place where there are individ-
ual teachers and students, they may get some inspiration or some
ideas from the lectures. Perhaps they will have fun thinking them
through—or going on to develop some of the ideas further.

June 1963 Richard P. Feynman
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V E C T O R S

1-1 Symmetry in physics
In this chapter we introduce a subject that is technically known
in physics as symmetry in physical law. The word “symmetry” is

used here with a special meaning, and therefore needs to be defined.
When is a thing symmetrical—how can we define it? When we have
a picture that is symmetrical, one side is somehow the same as the
other side. Professor Hermann Weyl has given this definition of sym-
metry: a thing is symmetrical if one can subject it to a certain oper-
ation and it appears exactly the same after the operation. For instance,
if we look at a silhouette of a vase that is left-and-right symmetrical,
then turn it 180° around the vertical axis, it looks the same. We shall
adopt the definition of symmetry in Weyl’s more general form, and
in that form we shall discuss symmetry of physical laws.

Suppose we build a complex machine in a certain place, with a
lot of complicated interactions, and balls bouncing around with
forces between them, and so on. Now suppose we build exactly the
same kind of equipment at some other place, matching part by
part, with the same dimensions and the same orientation, every-
thing the same only displaced laterally by some distance. Then, if
we start the two machines in the same initial circumstances, in exact
correspondence, we ask: Will one machine behave exactly the same
as the other? Will it follow all the motions in exact parallelism? Of
course the answer may well be no, because if we choose the wrong

1
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place for our machine it might be inside a wall and interferences
from the wall would make the machine not work.

All of our ideas in physics require a certain amount of common
sense in their application; they are not purely mathematical or ab-
stract ideas. We have to understand what we mean when we say
that the phenomena are the same when we move the apparatus to
a new position. We mean that we move everything that we believe
is relevant; if the phenomenon is not the same, we suggest that
something relevant has not been moved, and we proceed to look
for it. If we never find it, then we claim that the laws of physics do
not have this symmetry. On the other hand, we may find it—we
expect to find it—if the laws of physics do have this symmetry;
looking around, we may discover, for instance, that the wall is push-
ing on the apparatus. The basic question is, if we define things well
enough, if all the essential forces are included inside the apparatus,
if all the relevant parts are moved from one place to another, will
the laws be the same? Will the machinery work the same way?

It is clear that what we want to do is to move all the equipment
and essential influences, but not everything in the world—planets,
stars, and all—for if we do that, we have the same phenomenon
again for the trivial reason that we are right back where we started.
No, we cannot move everything. But it turns out in practice that
with a certain amount of intelligence about what to move, the ma-
chinery will work. In other words, if we do not go inside a wall, if
we know the origin of the outside forces, and arrange that those
are moved too, then the machinery will work the same in one lo-
cation as in another.

1-2 Translations
We shall limit our analysis to just mechanics, for which we now
have sufficient knowledge. In previous chapters we have seen that
the laws of mechanics can be summarized by a set of three equa-
tions for each particle:

(1.1)( / , ( / ) , ( / ) .m d x dt F m d y dt F m d z dt Fx y z
2 2 2 2 2 2= = =)
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Now this means that there exists a way to measure x, y, and z on
three perpendicular axes, and the forces along those directions, such
that these laws are true. These must be measured from some origin,
but where do we put the origin? All that Newton would tell us at
first is that there is some place that we can measure from, perhaps
the center of the universe, such that these laws are correct. But we
can show immediately that we can never find the center, because if
we use some other origin it would make no difference. In other
words, suppose that there are two people—Joe, who has an origin
in one place, and Moe, who has a parallel system whose origin is
somewhere else (Figure 1-1). Now when Joe measures the location
of the point in space, he finds it at x, y, and z (we shall usually leave
z out because it is too confusing to draw in a picture). Moe, on the
other hand, when measuring the same point, will obtain a different
x (in order to distinguish it, we will call it x' ), and in principle a
different y, although in our example they are numerically equal. So
we have

(1.2)

Now in order to complete our analysis we must know what Moe
would obtain for the forces. The force is supposed to act along some
line, and by the force in the x-direction we mean the part of the
total which is in the x-direction, which is the magnitude of the
force times this cosine of its angle with the x-axis. Now we see that

, .,x x a y z zy= - ==l l l

3
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Figure 1-1 Two parallel coordinate systems.
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Moe would use exactly the same projection as Joe would use, so we
have a set of equations

(1.3)

These would be the relationships between quantities as seen by Joe
and Moe.

The question is, if Joe knows Newton’s laws, and if Moe tries to
write down Newton’s laws, will they also be correct for him? Does
it make any difference from which origin we measure the points?
In other words, assuming that equations (1.1) are true, and the Eqs.
(1.2) and (1.3) give the relationship of the measurements, is it or
is it not true that

(a) m(d 2x'/dt 2) = Fx',
(b) m(d 2y'/dt 2) = Fy', (1.4)
(c) m(d 2z'/dt 2) = Fz' ?

In order to test these equations we shall differentiate the formula
for x' twice. First of all

Now we shall assume that Moe’s origin is fixed (not moving) rela-
tive to Joe’s; therefore a is a constant and da/dt = 0, so we find that

dx'/dt = dx/dt

and therefore

d2x'/dt 2 = d2x/dt 2;

therefore we know that Eq. (1.4a) becomes

m(d2x/dt 2) = Fx'.

(We also suppose that the masses measured by Joe and Moe are
equal.) Thus the acceleration times the mass is the same as the other
fellow’s. We have also found the formula for Fx', for, substituting
from Eq. (1.1), we find that

Fx' = Fx.

, , .F F F F F Fx x y z z= = =yl l l

( ) .dx
dt dt

d x a dt
dx

dt
da= - = -

l
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Therefore the laws as seen by Moe appear the same; he can write
Newton’s laws too, with different coordinates, and they will still be
right. That means that there is no unique way to define the origin
of the world, because the laws will appear the same, from whatever
position they are observed.

This is also true: if there is a piece of equipment in one place
with a certain kind of machinery in it, the same equipment in an-
other place will behave in the same way. Why? Because one ma-
chine, when analyzed by Moe, has exactly the same equations as
the other one, analyzed by Joe. Since the equations are the same,
the phenomena appear the same. So the proof that an apparatus in
a new position behaves the same as it did in the old position is the
same as the proof that the equations when displaced in space repro-
duce themselves. Therefore we say that the laws of physics are sym-
metrical for translational displacements, symmetrical in the sense that
the laws do not change when we make a translation of our coordi-
nates. Of course it is quite obvious intuitively that this is true, but
it is interesting and entertaining to discuss the mathematics of it.

1-3 Rotations
The above is the first of a series of ever more complicated proposi-
tions concerning the symmetry of a physical law. The next propo-
sition is that it should make no difference in which direction we
choose the axes. In other words, if we build a piece of equipment
in some place and watch it operate, and nearby we build the same
kind of apparatus but put it up on an angle, will it operate in the
same way? Obviously it will not if it is a grandfather clock, for ex-
ample! If a pendulum clock stands upright, it works fine, but if it
is tilted the pendulum falls against the side of the case and nothing
happens. The theorem is then false in the case of the pendulum
clock, unless we include the earth, which is pulling on the pendu-
lum. Therefore we can make a prediction about pendulum clocks
if we believe in the symmetry of physical law for rotation: some-
thing else is involved in the operation of a pendulum clock besides
the machinery of the clock, something outside it that we should
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look for. We may also predict that pendulum clocks will not work
the same way when located in different places relative to this mys-
terious source of asymmetry, perhaps the earth. Indeed, we know
that a pendulum clock up in an artificial satellite, for example,
would not tick either, because there is no effective force, and on
Mars it would go at a different rate. Pendulum clocks do involve
something more than just the machinery inside, they involve some-
thing on the outside. Once we recognize this factor, we see that we
must turn the earth along with the apparatus. Of course we do not
have to worry about that, it is easy to do; one simply waits a mo-
ment or two and the earth turns; then the pendulum clock ticks
again in the new position the same as it did before. While we are
rotating in space our angles are always changing, absolutely; this
change does not seem to bother us very much, for in the new po-
sition we seem to be in the same condition as in the old. This has
a certain tendency to confuse one, because it is true that in the new
turned position the laws are the same as in the unturned position,
but it is not true that as we turn a thing it follows the same laws as
it does when we are not turning it. If we perform sufficiently deli-
cate experiments, we can tell that the earth is rotating, but not that
it had rotated. In other words, we cannot locate its angular position,
but we can tell that it is changing.

Now we may discuss the effects of angular orientation upon
physical laws. Let us find out whether the same game with Joe and
Moe works again. This time, to avoid needless complication, we
shall suppose that Joe and Moe use the same origin (we have already
shown that the axes can be moved by translation to another place).
Assume that Moe’s axes have rotated relative to Joe’s by an angle i.
The two coordinate systems are shown in Figure 1-2, which is re-
stricted to two dimensions. Consider any point P having coordi-
nates (x, y) in Joe’s system and (x', y' ) in Moe’s system. We shall
begin, as in the previous case, by expressing the coordinates x' and
y' in terms of x, y, and i. To do so, we first drop perpendiculars
from P to all four axes and draw AB perpendicular to PQ. Inspec-
tion of the figure shows that x' can be written as the sum of two
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lengths along the x'-axis, and y' as the difference of two lengths
along AB. All these lengths are expressed in terms of x, y, and i in
equations (1.5), to which we have added an equation for the third
dimension.

x' = x cos i + y sin i,
y' = y cos i – x sin i, (1.5)
z' = z.

The next step is to analyze the relationship of forces as seen by
the two observers, following the same general method as before. Let
us assume that a force F, which has already been analyzed as having
components Fx and Fy (as seen by Joe), is acting on a particle of mass
m, located at point P in Figure 1-2. For simplicity, let us move both
sets of axes so that the origin is at P, as shown in Figure 1-3. Moe
sees the components of F along his axes as Fx' , and Fy' . Fx has com-
ponents along both the x'- and y'-axes, and Fy likewise has compo-
nents along both these axes. To express Fx' , in terms of Fx and Fy ,
we sum these components along the x'-axis, and in a like manner
we can express Fy' in terms of Fx and Fy. The results are

Fx' = Fx cos i + Fy sin i,
Fy' = Fy cos i – Fx sin i, (1.6)
Fz' = Fz.

7
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Figure 1-2 Two coordinate systems having different angular
orientations.
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It is interesting to note an accident of sorts, which is of extreme
importance: the formulas (1.5) and (1.6), for coordinates of P and
components of F, respectively, are of identical form.

As before, Newton’s laws are assumed to be true in Joe’s system,
and are expressed by equations (1.1). The question, again, is
whether Moe can apply Newton’s laws—will the results be correct
for his system of rotated axes? In other words, if we assume that
Eqs. (1.5) and (1.6) give the relationship of the measurements, is
it true or not true that

m(d2x'/dt 2) = Fx' ,
m(d2y'/dt 2) = Fy' , (1.7)
m(d2z'/dt 2) = Fz' ?

To test these equations, we calculate the left and right sides inde-
pendently, and compare the results. To calculate the left sides, we
multiply equations (1.5) by m, and differentiate twice with respect
to time, assuming the angle i to be constant. This gives

m(d 2x'/dt 2) = m(d 2x/dt2) cos i + m(d 2y/dt 2) sin i,
m(d 2y'/dt 2) = m(d 2y/dt 2) cos i – m(d 2x/dt2) sin i, (1.8)
m(d 2z'/dt 2) = m(d 2z/dt 2).

We calculate the right sides of equations (1.7) by substituting equa-
tions (1.1) into equations (1.6). This gives

8
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Behold! The right sides of Eqs. (1.8) and (1.9) are identical, so
we conclude that if Newton’s laws are correct on one set of axes,
they are also valid on any other set of axes. This result, which has
now been established for both translation and rotation of axes, has
certain consequences: First, no one can claim his particular axes are
unique, but of course they can be more convenient for certain par-
ticular problems. For example, it is handy to have gravity along one
axis, but this is not physically necessary. Second, it means that any
piece of equipment which is completely self-contained, with all the
force-generating equipment completely inside the apparatus, would
work the same when turned at an angle.

1-4 Vectors
Not only Newton’s laws, but also the other laws of physics, so far
as we know today, have the two properties which we call invariance
(or symmetry) under translation of axes and rotation of axes. These
properties are so important that a mathematical technique has been
developed to take advantage of them in writing and using physical
laws.

The foregoing analysis involved considerable tedious mathemat-
ical work. To reduce the details to a minimum in the analysis of
such questions, a very powerful mathematical machinery has been
devised. This system, called vector analysis, supplies the title of this
chapter; strictly speaking, however, this is a chapter on the symme-
try of physical laws. By the methods of the preceding analysis, we
were able to do everything required for obtaining the results that
we sought, but in practice we should like to do things more easily
and rapidly, so we employ the vector technique.

We begin by noting some characteristics of two kinds of quan-
tities that are important in physics. (Actually there are more than
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two, but let us start out with two.) One of them, like the number
of potatoes in a sack, we call an ordinary quantity, or an undirected
quantity, or a scalar. Temperature is an example of such a quantity.
Other quantities that are important in physics do have direction,
for instance velocity: we have to keep track of which way a body is
going, not just its speed. Momentum and force also have direction,
as does displacement: when someone steps from one place to an-
other in space, we can keep track of how far he went, but if we wish
also to know where he went, we have to specify a direction.

All quantities that have a direction, like a step in space, are called
vectors.

A vector is three numbers. In order to represent a step in space,
say from the origin to some particular point P whose location is (x,
y, z), we really need three numbers, but we are going to invent a
single mathematical symbol, r, which is unlike any other mathe-
matical symbols we have so far used.* It is not a single number, it
represents three numbers: x, y, and z. It means three numbers, but
not really only those three numbers, because if we were to use a dif-
ferent coordinate system, the three numbers would be changed to
x', y', and z'. However, we want to keep our mathematics simple
and so we are going to use the same mark to represent the three
numbers (x, y, z) and the three numbers (x', y', z' ). That is, we use
the same mark to represent the first set of three numbers for one
coordinate system, but the second set of three numbers if we are
using the other coordinate system. This has the advantage that
when we change the coordinate system, we do not have to change
the letters of our equations. If we write an equation in terms of x,
y, z, and then use another system, we have to change to x', y', z',
but we shall just write r, with the convention that it represents (x,
y, z) if we use one set of axes, or (x', y', z' ) if we use another set of
axes, and so on. The three numbers which describe the quantity in
a given coordinate system are called the components of the vector

10
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* In type, vectors are represented by boldface; in handwritten form an arrow is
used: .r
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in the direction of the coordinate axes of that system. That is, we
use the same symbol for the three letters that correspond to the
same object, as seen from different axes. The very fact that we can say
“the same object” implies a physical intuition about the reality of a
step in space, that is independent of the components in terms of
which we measure it. So the symbol r will represent the same thing
no matter how we turn the axes.

Now suppose there is another directed physical quantity, any
other quantity, which also has three numbers associated with it, like
force, and these three numbers change to three other numbers by a
certain mathematical rule, if we change the axes. It must be the same
rule that changes (x, y, z) into (x', y', z' ). In other words, any physical
quantity associated with three numbers which transform as do the
components of a step in space is a vector. An equation like

F = r

would thus be true in any coordinate system if it were true in one.
This equation, of course, stands for the three equations

Fx = x, Fy = y, Fz = z,

or, alternatively, for

Fx' = x', Fy' = y', Fz' = z'.

The fact that a physical relationship can be expressed as a vector
equation assures us the relationship is unchanged by a mere rotation
of the coordinate system. That is the reason why vectors are so use-
ful in physics.

Now let us examine some of the properties of vectors. As exam-
ples of vectors we may mention velocity, momentum, force, and
acceleration. For many purposes it is convenient to represent a vec-
tor quantity by an arrow that indicates the direction in which it is
acting. Why can we represent force, say, by an arrow? Because it
has the same mathematical transformation properties as a “step in
space.” We thus represent it in a diagram as if it were a step, using
a scale such that one unit of force, or one newton, corresponds to

11
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a certain convenient length. Once we have done this, all forces can
be represented as lengths, because an equation like

F = kr,

where k is some constant, is a perfectly legitimate equation. Thus
we can always represent forces by lines, which is very convenient,
because once we have drawn the line we no longer need the axes.
Of course, we can quickly calculate the three components as they
change upon turning the axes, because that is just a geometric
problem.

1-5 Vector algebra
Now we must describe the laws, or rules, for combining vectors in
various ways. The first such combination is the addition of two vec-
tors: suppose that a is a vector which in some particular coordinate
system has the three components (ax, ay, az), and that b is another
vector which has the three components (bx, by, bz). Now let us in-
vent three new numbers (ax + bx, ay + by, az + bz). Do these form
a vector? “Well,” we might say, “they are three numbers, and every
three numbers form a vector.” No, not every three numbers form a
vector! In order for it to be a vector, not only must there be three
numbers, but these must be associated with a coordinate system in
such a way that if we turn the coordinate system, the three numbers
“revolve” on each other, get “mixed up” in each other, by the precise
laws we have already described. So the question is, if we now rotate
the coordinate system so that (ax, ay, az) become (ax', ay', az') and
(bx, by, bz) become (bx', by', bz'), what do (ax + bx, ay + by, az + bz)
become? Do they become (ax' + bx', ay' + by', az' + bz') or not? The
answer is, of course, yes, because the prototype transformations of
Eq. (1.5) constitute what we call a linear transformation. If we
apply those transformations to ax and bx to get ax', + bx', we find
that the transformed ax + bx is indeed the same as ax' + bx'. When
a and b are “added together” in this sense, they will form a vector
which we may call c. We would write this as

12
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c = a + b.

Now c has the interesting property

c = b + a,

as we can immediately see from its components. Thus also,

a + (b + c) = (a + b) + c.

We can add vectors in any order.
What is the geometric significance of a + b? Suppose that a and

b were represented by lines on a piece of paper, what would c look
like? This is shown in Figure 1-4. We see that we can add the com-
ponents of b to those of a most conveniently if we place the rec-
tangle representing the components of b next to that representing
the components of a in the manner indicated. Since b just “fits”
into its rectangle, as does a into its rectangle, this is the same as
putting the “tail” of b on the “head” of a, the arrow from the “tail”
of a to the “head” of b being the vector c. Of course, if we added a
to b the other way around, we would put the “tail” of a on the
“head” of b, and by the geometrical properties of parallelograms
we would get the same result for c. Note that vectors can be added
in this way without reference to any coordinate axes.

Suppose we multiply a vector by a number α, what does this
mean? We define it to mean a new vector whose components are

13
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Figure 1-4 The addition of vectors.
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αax, αay, and αaz. We leave it as a problem for the student to prove
that it is a vector.

Now let us consider vector subtraction. We may define subtrac-
tion in the same way as addition, but instead of adding, we subtract
the components. Or we might define subtraction by defining a neg-
ative vector, –b = –1b, and then we would add the components.
It comes to the same thing. The result is shown in Figure 1-5. This
figure shows d = a – b = a + (–b); we also note that the difference
a – b can be found very easily from a and b by using the equivalent
relation a = b + d. Thus the difference is even easier to find than
the sum: we just draw the vector from b to a, to get a – b!

Next we discuss velocity. Why is velocity a vector? If position is
given by the three coordinates (x, y, z), what is the velocity? The
velocity is given by dx/dt, dy/dt, and dz/dt. Is that a vector, or not?
We can find out by differentiating the expressions in Eq. (1.5) to
find out whether dx'/dt transforms in the right way. We see that the
components dx/dt and dy/dt do transform according to the same
law as x and y, and therefore the time derivative is a vector. So the
velocity is a vector. We can write the velocity in an interesting way
as

v = dr/dt.

What the velocity is, and why it is a vector, can also be understood
more pictorially: How far does a particle move in a short time Δt? 

14
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Figure 1-5 The subtraction of vectors.
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Answer: Δr, so if a particle is “here” at one instant and “there” at
another instant, then the vector difference of the positions Δr =

r2 – r1, which is in the direction of motion shown in Figure 1-6,
divided by the time interval Δt = t2 – t1, is the “average velocity”
vector.

In other words, by vector velocity we mean the limit, as Δt goes
to 0, of the difference between the radius vectors at the time t +
Δt and the time t, divided by Δt:

(1.10)

Thus velocity is a vector because it is the difference of two vectors.
It is also the right definition of velocity because its components are
dx/dt, dy/dt, and dz/dt. In fact, we see from this argument that if
we differentiate any vector with respect to time we produce a new
vector. So we have several ways of producing new vectors: (1) mul-
tiply by a constant, (2) differentiate with respect to time, (3) add
or subtract two vectors.

1-6 Newton’s laws in vector notation
In order to write Newton’s laws in vector form, we have to go just
one step further, and define the acceleration vector. This is the time
derivative of the velocity vector, and it is easy to demonstrate that

( / ) / .t d dtv r rlim
t 0

D D= =
"D
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Figure 1-6 The displacement of a particle in a short time interval 
Δt = t2 – t1.
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its components are the second derivatives of x, y, and z with respect
to t:

(1.11)

(1.12)

With this definition, then, Newton’s laws can be written in this
way:

ma = F (1.13)

or

m(d 2r/dt 2) = F. (1.14)

Now the problem of proving the invariance of Newton’s laws
under rotation of coordinates is this: prove that a is a vector; this
we have just done. Prove that F is a vector; we suppose it is. So if
force is a vector, then, since we know acceleration is a vector, Eq.
(1.13) will look the same in any coordinate system. Writing it in a
form which does not explicitly contain x’s, y’s, and z’s has the ad-
vantage that from now on we need not write three laws every time
we write Newton’s equations or other laws of physics. We write
what looks like one law, but really, of course, it is the three laws for
any particular set of axes, because any vector equation involves the
statement that each of the components is equal.

The fact that the acceleration is the rate of change of the vector
velocity helps us to calculate the acceleration in some rather com-
plicated circumstances. Suppose, for instance, that a particle is mov-
ing on some complicated curve (Figure 1-7) and that, at a given
instant t, it had a certain velocity v1, but that when we go to another
instant t2 a little later, it has a different velocity v2. What is the ac-
celeration? answer: Acceleration is the difference in the velocity di-
vided by the small time interval, so we need the difference of the
two velocities. How do we get the difference of the velocities? To
subtract two vectors, we put the vector across the ends of v2 and
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v1; that is, we draw Δv as the difference of the two vectors, right?
No! That only works when the tails of the vectors are in the same
place! It has no meaning if we move the vector somewhere else and
then draw a line across, so watch out! We have to draw a new dia-
gram to subtract the vectors. In Figure 1-8, v1 and v2 are both
drawn parallel and equal to their counterparts in Figure 1-7, and
now we can discuss the acceleration. Of course the acceleration is
simply Δv/Δt. It is interesting to note that we can compose the ve-
locity difference out of two parts; we can think of acceleration as
having two components, Δv|| in the direction tangent to the path
and Δv

┴
at right angles to the path, as indicated in Figure 1-8. The

acceleration tangent to the path is, of course, just the change in the
length of the vector, i.e., the change in the speed v:

a|| = dv/dt. (1.15)

The other component of acceleration, at right angles to the curve,
is easy to calculate, using Figures 1-7 and 1-8. In the short time Δt
let the change in angle between v1 and v2 be the small angle Δi. If
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Figure 1-7 A curved trajectory.

Figure 1-8 Diagram for calculating the acceleration.
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the magnitude of the velocity is called v, then of course

Δv
┴

= vΔi

and the acceleration a will be

a
┴

= v(Δi/Δt).

Now we need to know Δi/Δt, which can be found this way: If, at
the given moment, the curve is approximated as a circle of a certain
radius R, then in a time Δt the distance s is, of course, v Δt, where
v is the speed.

Δi = (vΔt)/R, or  Δi/Δt = v/R.

Therefore, we find

a
┴

= v2/R, (1.16)

as we have seen before.

1-7 Scalar product of vectors
Now let us examine a little further the properties of vectors. It is easy
to see that the length of a step in space would be the same in any co-
ordinate system. That is, if a particular step r is represented by x, y,
z, in one coordinate system, and by x', y', z' in another coordinate
system, surely the distance r = |r| would be the same in both. Now

and also
.

So what we wish to verify is that these two quantities are equal. It is
much more convenient not to bother to take the square root, so let
us talk about the square of the distance; that is, let us find out whether

x2 + y2 + z2 = x' 2 + y' 2 + z' 2. (1.17)

It had better be—and if we substitute Eq. (1.5) we do indeed find
that it is. So we see that there are other kinds of equations which
are true for any two coordinate systems.

r x y z2 2 2= + +

r x y z2 2 2= + +l l l l
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Something new is involved. We can produce a new quantity, a
function of x, y, and z, called a scalar function, a quantity which
has no direction but which is the same in both systems. Out of a
vector we can make a scalar. We have to find a general rule for that.
It is clear what the rule is for the case just considered: add the
squares of the components. Let us now define a new thing, which
we call a · a. This is not a vector, but a scalar; it is a number that is
the same in all coordinate systems, and it is defined to be the sum
of the squares of the three components of the vector:

. (1.18)

Now you say, “But with what axes?” It does not depend on the
axes, the answer is the same in every set of axes. So we have a new
kind of quantity, a new invariant or scalar produced by one vector
“squared.” If we now define the following quantity for any two vec-
tors a and b:

a · b = axbx + ayby + azbz , (1.19)

we find that this quantity, calculated in the primed and unprimed
systems, also stays the same. To prove it we note that it is true of
a · a, b · b, and c · c, where c = a + b. Therefore the sum of the
squares (ax + bx)2 + (ay+ by)2 + (az + bz)2 will be invariant:

(ax + bx)2 + (ay + by)2 + (az + bz)2 =

(ax' + bx')2 + (ay' + by')2 + (az' + bz')2. (1.20)

If both sides of this equation are expanded, there will be cross prod-
ucts of just the type appearing in Eq. (1.19), as well as the sums of
squares of the components of a and b. The invariance of terms of
the form of Eq. (1.18) then leaves the cross product terms (1.19)
invariant also.

The quantity a · b is called the scalar product of two vectors, a
and b, and it has many interesting and useful properties. For in-
stance, it is easily proved that

a · (b + c) = a · b + a · c. (1.21)

a a aa a x y z
2 2 2= + +$
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Also, there is a simple geometrical way to calculate a · b, without
having to calculate the components of a and b: a · b is the product
of the length of a and the length of b times the cosine of the angle
between them. Why? Suppose that we choose a special coordinate
system in which the x-axis lies along a; in those circumstances, the
only component of a that will be there is ax, which is of course the
whole length of a. Thus Eq. (1.19) reduces to a · b = axbx for this
case, and this is the length of a times the component of b in the
direction of a, that is, b cos i:

a · b = ab cos i.

Therefore, in that special coordinate system, we have proved that
a · b is the length of a times the length of b times cos i. But if it is
true in one coordinate system, it is true in all, because a · b is inde-
pendent of the coordinate system; that is our argument.

What good is the dot product? Are there any cases in physics
where we need it? Yes, we need it all the time. For instance, in
Chapter 4* the kinetic energy was called ½mv2, but if the object is
moving in space it should be the velocity squared in the x-direction,
the y-direction, and the z-direction, and so the formula for kinetic
energy according to vector analysis is

(1.22)

Energy does not have direction. Momentum has direction; it is a
vector, and it is the mass times the velocity vector.

Another example of a dot product is the work done by a force
when something is pushed from one place to the other. We have
not yet defined work, but it is equivalent to the energy change, the
weights lifted, when a force F acts through a distance s:

Work = F · s. (1.23)

It is sometimes very convenient to talk about the component of
a vector in a certain direction (say the vertical direction because
that is the direction of gravity). For such purposes, it is useful to

( ) ( ) .m m v v vv v2
1

2
1K.E. x y z

2 2 2= = + +$
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invent what we call a unit vector in the direction that we want to
study. By a unit vector we mean one whose dot product with itself
is equal to unity. Let us call this unit vector i; then i · i = 1. Then,
if we want the component of some vector in the direction of i, we
see that the dot product a · i will be a cos i, i.e., the component of
a in the direction of i. This is a nice way to get the component; in
fact, it permits us to get all the components and to write a rather
amusing formula. Suppose that in a given system of coordinates,
x, y, and z, we invent three vectors: i, a unit vector in the direction
x; j, a unit vector in the direction y; and k, a unit vector in the di-
rection z. Note first that i · i = 1. What is i · j? When two vectors
are at right angles, their dot product is zero. Thus

i · i = 1
i · j = 0 j · j = 1 (1.24)
i · k = 0 j · k = 0 k · k = 1

Now with these definitions, any vector whatsoever can be written
this way:

a = axi + ayj = azk. (1.25)

By this means we can go from the components of a vector to the
vector itself.

This discussion of vectors is by no means complete. However,
rather than try to go more deeply into the subject now, we shall
first learn to use in physical situations some of the ideas so far dis-
cussed. Then, when we have properly mastered this basic material,
we shall find it easier to penetrate more deeply into the subject
without getting too confused. We shall later find that it is useful to
define another kind of product of two vectors, called the vector
product, and written as a# b. However, we shall undertake a dis-
cussion of such matters in a later chapter.
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S Y M M E T RY  I N  P H Y S I C A L  L AW S

2-1 Symmetry operations
The subject of this chapter is what we may call symmetry in phys-
ical laws. We have already discussed certain features of symme-

try in physical laws in connection with vector analysis (Chapter 1),
the theory of relativity (which follows in Chapter 4), and rotation
(Chapter 20*).

Why should we be concerned with symmetry? In the first place,
symmetry is fascinating to the human mind, and everyone likes ob-
jects or patterns that are in some way symmetrical. It is an interest-
ing fact that nature often exhibits certain kinds of symmetry in the
objects we find in the world around us. Perhaps the most symmet-
rical object imaginable is a sphere, and nature is full of spheres—
stars, planets, water droplets in clouds. The crystals found in rocks
exhibit many different kinds of symmetry, the study of which tells
us some important things about the structure of solids. Even the
animal and vegetable worlds show some degree of symmetry, al-
though the symmetry of a flower or of a bee is not as perfect or as
fundamental as is that of a crystal.

But our main concern here is not with the fact that the objects
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of nature are often symmetrical. Rather, we wish to examine some
of the even more remarkable symmetries of the universe—the sym-
metries that exist in the basic laws themselves which govern the op-
eration of the physical world.

First, what is symmetry? How can a physical law be “symmetri-
cal”? The problem of defining symmetry is an interesting one and
we have already noted that Weyl gave a good definition, the sub-
stance of which is that a thing is symmetrical if there is something
we can do to it so that after we have done it, it looks the same as it
did before. For example, a symmetrical vase is of such a kind that
if we reflect or turn it, it will look the same as it did before. The
question we wish to consider here is what we can do to physical
phenomena, or to a physical situation in an experiment, and yet
leave the result the same. A list of the known operations under
which various physical phenomena remain invariant is shown in
Table 2-1.

2-2 Symmetry in space and time
The first thing we might try to do, for example, is to translate the
phenomenon in space. If we do an experiment in a certain region,
and then build another apparatus at another place in space (or
move the original one over), then, whatever went on in one appa-
ratus, in a certain order in time, will occur in the same way if we
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Table 2-1 Symmetry Operations

Translation in space
Translation in time
Rotation through a fixed angle
Uniform velocity in a straight line (Lorentz transformation)
Reversal of time
Reflection of space
Interchange of identical atoms or identical particles
Quantum-mechanical phase
Matter-antimatter (charge conjugation)
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have arranged the same condition with all due attention to the re-
strictions that we mentioned before: that all of those features of the
environment which make it not behave the same way have also
been moved over—we talked about how to define how much we
should include in those circumstances, and we shall not go into
those details again.

In the same way, we also believe today that displacement in time
will have no effect on physical laws. (That is, as far as we know
today—all of these things are as far as we know today!) That means
that if we build a certain apparatus and start it at a certain time,
say on Thursday at 10:00 a.m., and then build the same apparatus
and start it, say, three days later in the same condition, the two ap-
paratuses will go through the same motions in exactly the same way
as a function of time no matter what the starting time, provided
again, of course, that the relevant features of the environment are
also modified appropriately in time. That symmetry means, of
course, that if one bought General Motors stock three months ago,
the same thing would happen to it if he bought it now!

We have to watch out for geographical differences too, for there
are, of course, variations in the characteristics of the earth’s surface.
So, for example, if we measure the magnetic field in a certain region
and move the apparatus to some other region, it may not work in
precisely the same way because the magnetic field is different, but
we say that is because the magnetic field is associated with the earth.
We can imagine that if we move the whole earth and the equipment,
it would make no difference in the operation of the apparatus.

Another thing that we discussed in considerable detail was rota-
tion in space: if we turn an apparatus at an angle it works just as
well, provided we turn everything else that is relevant along with
it. In fact, we discussed the problem of symmetry under rotation
in space in some detail in Chapter 1, and we invented a mathemat-
ical system called vector analysis to handle it as neatly as possible.

On a more advanced level we had another symmetry—the sym-
metry under uniform velocity in a straight line. That is to say—a
rather remarkable effect—that if we have a piece of apparatus
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working a certain way and then take the same apparatus and put it
in a car, and move the whole car, plus all the relevant surroundings,
at a uniform velocity in a straight line, then so far as the phenomena
inside the car are concerned there is no difference: all the laws of
physics appear the same. We even know how to express this more
technically, and that is that the mathematical equations of the phys-
ical laws must be unchanged under a Lorentz transformation. As a
matter of fact, it was a study of the relativity problem that concen-
trated physicists’ attention most sharply on symmetry in physical
laws.

Now the above-mentioned symmetries have all been of a geo-
metrical nature, time and space being more or less the same, but
there are other symmetries of a different kind. For example, there
is a symmetry which describes the fact that we can replace one atom
by another of the same kind; to put it differently, there are atoms
of the same kind. It is possible to find groups of atoms such that if
we change a pair around, it makes no difference—the atoms are
identical. Whatever one atom of oxygen of a certain type will do,
another atom of oxygen of that type will do. One may say, “That
is ridiculous, that is the definition of equal types!” That may be
merely the definition, but then we still do not know whether there
are any “atoms of the same type”; the fact is that there are many,
many atoms of the same type. Thus it does mean something to say
that it makes no difference if we replace one atom by another of
the same type. The so-called elementary particles of which the
atoms are made are also identical particles in the above sense—all
electrons are the same; all protons are the same; all positive pions
are the same; and so on.

After such a long list of things that can be done without chang-
ing the phenomena, one might think we could do practically any-
thing; so let us give some examples to the contrary, just to see the
difference. Suppose that we ask: “Are the physical laws symmetrical
under a change of scale?” Suppose we build a certain piece of ap-
paratus, and then build another apparatus five times bigger in every
part, will it work exactly the same way? The answer is, in this case,
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no! The wavelength of light emitted, for example, by the atoms in-
side one box of sodium atoms and the wavelength of light emitted
by a gas of sodium atoms five times in volume is not five times
longer, but is in fact exactly the same as the other. So the ratio of
the wavelength to the size of the emitter will change.

Another example: we see in the newspaper, every once in a while,
pictures of a great cathedral made with little matchsticks—a
tremendous work of art by some retired fellow who keeps gluing
matchsticks together. It is much more elaborate and wonderful than
any real cathedral. If we imagine that this wooden cathedral were
actually built on the scale of a real cathedral, we see where the trou-
ble is; it would not last—the whole thing would collapse because
of the fact that scaled-up matchsticks are just not strong enough.
“Yes,” one might say, “but we also know that when there is an in-
fluence from the outside, it also must be changed in proportion!”
We are talking about the ability of the object to withstand gravita-
tion. So what we should do is first to take the model cathedral of
real matchsticks and the real earth, and then we know it is stable.
Then we should take the larger cathedral and take a bigger earth.
But then it is even worse, because the gravitation is increased still
more!

Today, of course, we understand the fact that phenomena de-
pend on the scale on the grounds that matter is atomic in nature,
and certainly if we built an apparatus that was so small there were
only five atoms in it, it would clearly be something we could not
scale up and down arbitrarily. The scale of an individual atom is
not at all arbitrary—it is quite definite.

The fact that the laws of physics are not unchanged under a
change of scale was discovered by Galileo. He realized that the
strengths of materials were not in exactly the right proportion to
their sizes, and he illustrated this property that we were just dis-
cussing, about the cathedral of matchsticks, by drawing two bones,
the bone of one dog, in the right proportion for holding up his
weight, and the imaginary bone of a “super dog” that would be,
say, ten or a hundred times bigger—that bone was a big, solid thing
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with quite different proportions. We do not know whether he ever
carried the argument quite to the conclusion that the laws of nature
must have a definite scale, but he was so impressed with this dis-
covery that he considered it to be as important as the discovery of
the laws of motion, because he published them both in the same
volume, called “On Two New Sciences.”

Another example in which the laws are not symmetrical, that we
know quite well, is this: a system in rotation at a uniform angular
velocity does not give the same apparent laws as one that is not ro-
tating. If we make an experiment and then put everything in a
spaceship and have the spaceship spinning in empty space, all alone
at a constant angular velocity, the apparatus will not work the same
way because, as we know, things inside the equipment will be
thrown to the outside, and so on, by the centrifugal or Coriolis
forces, etc. In fact, we can tell that the earth is rotating by using a
so-called Foucault pendulum, without looking outside.

Next we mention a very interesting symmetry which is obviously
false, i.e., reversibility in time. The physical laws apparently cannot
be reversible in time, because, as we know, all obvious phenomena
are irreversible on a large scale: “The moving finger writes, and hav-
ing writ, moves on.” So far as we can tell, this irreversibility is due
to the very large number of particles involved, and if we could see
the individual molecules, we would not be able to discern whether
the machinery was working forwards or backwards. To make it
more precise: we build a small apparatus in which we know what
all the atoms are doing, in which we can watch them jiggling. Now
we build another apparatus like it, but which starts its motion in
the final condition of the other one, with all the velocities precisely
reversed. It will then go through the same motions, but exactly in re-
verse. Putting it another way: if we take a motion picture, with suffi-
cient detail, of all the inner works of a piece of material and shine
it on a screen and run it backwards, no physicist will be able to say,
“That is against the laws of physics, that is doing something
wrong!” If we do not see all the details, of course, the situation will
be perfectly clear. If we see the egg splattering on the sidewalk and
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the shell cracking open, and so on, then we will surely say, “That
is irreversible, because if we run the moving picture backwards the
egg will all collect together and the shell will go back together, and
that is obviously ridiculous!” But if we look at the individual atoms
themselves, the laws look completely reversible. This is, of course,
a much harder discovery to have made, but apparently it is true
that the fundamental physical laws, on a microscopic and funda-
mental level, are completely reversible in time!

2-3 Symmetry and conservation laws
The symmetries of the physical laws are very interesting at this level,
but they turn out, in the end, to be even more interesting and ex-
citing when we come to quantum mechanics. For a reason which
we cannot make clear at the level of the present discussion—a fact
that most physicists still find somewhat staggering, a most pro-
found and beautiful thing, is that, in quantum mechanics, for each
of the rules of symmetry there is a corresponding conservation law; there
is a definite connection between the laws of conservation and the
symmetries of physical laws. We can only state this at present, with-
out any attempt at explanation.

The fact, for example, that the laws are symmetrical for transla-
tion in space when we add the principles of quantum mechanics
turns out to mean that momentum is conserved.

That the laws are symmetrical under translation in time means,
in quantum mechanics, that energy is conserved.

Invariance under rotation through a fixed angle in space corre-
sponds to the conservation of angular momentum. These connections
are very interesting and beautiful things, among the most beautiful
and profound things in physics.

Incidentally, there are a number of symmetries which appear in
quantum mechanics which have no classical analog, which have no
method of description in classical physics. One of these is as fol-
lows: If ψ is the amplitude for some process or other, we know that
the absolute square of ψ is the probability that the process will
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occur. Now if someone else were to make his calculations, not with
this ψ, but with a ψ′ which differs merely by a change in phase (let
Δ be some constant, and multiply eiΔ times the old ψ), the absolute
square of ψ′, which is the probability of the event, is then equal to
the absolute square of ψ:

ψ′ = ψeiΔ; |ψ′|2 = |ψ|2. (2.1)

Therefore the physical laws are unchanged if the phase of the wave
function is shifted by an arbitrary constant. That is another sym-
metry. Physical laws must be of such a nature that a shift in the
quantum-mechanical phase makes no difference. As we have just
mentioned, in quantum mechanics there is a conservation law for
every symmetry. The conservation law which is connected with the
quantum-mechanical phase seems to be the conservation of electrical
charge. This is altogether a very interesting business!

2-4 Mirror reflections
Now the next question, which is going to concern us for most of
the rest of this chapter, is the question of symmetry under reflection
in space. The problem is this: Are the physical laws symmetrical
under reflection? We may put it this way: Suppose we build a piece
of equipment, let us say a clock, with lots of wheels and hands and
numbers; it ticks, it works, and it has things wound up inside. We
look at the clock in the mirror. How it looks in the mirror is not
the question. But let us actually build another clock which is exactly
the same as the way the first clock looks in the mirror—every time
there is a screw with a right-hand thread in one, we use a screw
with a left-hand thread in the corresponding place of the other;
where one is marked “2” on the face, we mark a “ ”  on the face of
the other; each coiled spring is twisted one way in one clock and
the other way in the mirror-image clock; when we are all finished,
we have two clocks, both physical, which bear to each other the re-
lation of an object and its mirror image, although they are both ac-
tual, material objects, we emphasize. Now the question is: If the
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two clocks are started in the same condition, the springs wound to
corresponding tightnesses, will the two clocks tick and go around,
forever after, as exact mirror images? (This is a physical question,
not a philosophical question.) Our intuition about the laws of
physics would suggest that they would.

We would suspect that, at least in the case of these clocks, re-
flection in space is one of the symmetries of physical laws, that if
we change everything from “right” to “left” and leave it otherwise
the same, we cannot tell the difference. Let us, then, suppose for a
moment that this is true. If it is true, then it would be impossible
to distinguish “right” and “left” by any physical phenomenon, just
as it is, for example, impossible to define a particular absolute ve-
locity by a physical phenomenon. So it should be impossible, by
any physical phenomenon, to define absolutely what we mean by
“right” as opposed to “left,” because the physical laws should be
symmetrical.

Of course, the world does not have to be symmetrical. For example,
using what we may call “geography,” surely “right” can be defined.
For instance, we stand in New Orleans and look at Chicago, and
Florida is to our right (when our feet are on the ground!). So we can
define “right” and “left” by geography. Of course, the actual situa-
tion in any system does not have to have the symmetry that we are
talking about; it is a question of whether the laws are symmetrical—
in other words, whether it is against the physical laws to have a sphere
like the earth with “left-handed dirt” on it and a person like our-
selves standing looking at a city like Chicago from a place like New
Orleans, but with everything the other way around, so Florida is on
the other side. It clearly seems not impossible, not against the phys-
ical laws, to have everything changed left for right.

Another point is that our definition of “right” should not depend
on history. An easy way to distinguish right from left is to go to a
machine shop and pick up a screw at random. The odds are it has
a right-hand thread—not necessarily, but it is much more likely to
have a right-hand thread than a left-hand one. This is a question
of history or convention, or the way things happen to be, and is
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again not a question of fundamental laws. As we can well appreci-
ate, everyone could have started out making left-handed screws!

So we must try to find some phenomenon in which “right hand”
is involved fundamentally. The next possibility we discuss is the
fact that polarized light rotates its plane of polarization as it goes
through, say, sugar water. As we saw in Chapter 33,* it rotates, let
us say, to the right in a certain sugar solution. That is a way of defin-
ing “right-hand,” because we may dissolve some sugar in the water
and then the polarization goes to the right. But sugar has come
from living things, and if we try to make the sugar artificially, then
we discover that it does not rotate the plane of polarization! But if
we then take that same sugar which is made artificially and which
does not rotate the plane of polarization, and put bacteria in it (they
eat some of the sugar) and then filter out the bacteria, we find that
we still have sugar left (almost half as much as we had before), and
this time it does rotate the plane of polarization, but the other way!
It seems very confusing, but is easily explained.

Take another example: One of the substances which is common
to all living creatures and that is fundamental to life is protein. Pro-
teins consist of chains of amino acids. Figure 2-1 shows a model of
an amino acid that comes out of a protein. This amino acid is called
alanine, and the molecular arrangement would look like that in
Figure 2-1(a) if it came out of a protein of a real living thing. On
the other hand, if we try to make alanine from carbon dioxide,
ethane, and ammonia (and we can make it, it is not a complicated
molecule), we discover that we are making equal amounts of this
molecule and the one shown in Figure 2-1(b)! The first molecule,
the one that comes from the living thing, is called L-alanine. The
other one, which is the same chemically, in that it has the same kinds
of atoms and the same connections of the atoms, is a “right-hand”
molecule, compared with the “left-hand” L-alanine, and it is called
D-alanine. The interesting thing is that when we make alanine at
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home in a laboratory from simple gases, we get an equal mixture of
both kinds. However, the only thing that life uses is L-alanine. (This
is not exactly true. Here and there in living creatures there is a special
use for D-alanine, but it is very rare. All proteins use L-alanine ex-
clusively.) Now if we make both kinds, and we feed the mixture to
some animal which likes to “eat,” or use up, alanine, it cannot use
D-alanine, so it only uses the L-alanine; that is what happened to
our sugar—after the bacteria eat the sugar that works well for them,
only the “wrong” kind is left! (Left-handed sugar tastes sweet, but
not the same as right-handed sugar.)

So it looks as though the phenomena of life permit a distinction
between “right” and “left,” or chemistry permits a distinction, be-
cause the two molecules are chemically different. But no, it does
not! So far as physical measurements can be made, such as of en-
ergy, the rates of chemical reactions, and so on, the two kinds work
exactly the same way if we make everything else in a mirror image
too. One molecule will rotate light to the right, and the other will
rotate it to the left in precisely the same amount, through the same
amount of fluid. Thus, so far as physics is concerned, these two
amino acids are equally satisfactory. So far as we understand things
today, the fundamentals of the Schrödinger equation have it that
the two molecules should behave in exactly corresponding ways, so
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that one is to the right as the other is to the left. Nevertheless, in
life it is all one way!

It is presumed that the reason for this is the following. Let us
suppose, for example, that life is somehow at one moment in a cer-
tain condition in which all the proteins in some creatures have left-
handed amino acids, and all the enzymes are lopsided—every
substance in the living creature is lopsided—it is not symmetrical.
So when the digestive enzymes try to change the chemicals in the
food from one kind to another, one kind of chemical “fits” into the
enzyme, but the other kind does not (like Cinderella and the slip-
per, except that it is a “left foot” that we are testing). So far as we
know, in principle, we could build a frog, for example, in which
every molecule is reversed, everything is like the “left-hand” mirror
image of a real frog; we have a left-hand frog. This left-hand frog
would go on all right for a while, but he would find nothing to eat,
because if he swallows a fly, his enzymes are not built to digest it.
The fly has the wrong “kind” of amino acids (unless we give him a
left-hand fly). So as far as we know, the chemical and life processes
would continue in the same manner if everything were reversed.

If life is entirely a physical and chemical phenomenon, then we
can understand that the proteins are all made in the same corkscrew
only from the idea that at the very beginning some living molecules,
by accident, got started and a few won. Somewhere, once, one or-
ganic molecule was lopsided in a certain way, and from this partic-
ular thing the “right” happened to evolve in our particular
geography; a particular historical accident was one-sided, and ever
since then the lopsidedness has propagated itself. Once having ar-
rived at the state that it is in now, of course, it will always continue—
all the enzymes digest the right things, manufacture the right
things: when the carbon dioxide and the water vapor, and so on,
go in the plant leaves, the enzymes that make the sugars make them
lopsided because the enzymes are lopsided. If any new kind of virus
or living thing were to originate at a later time, it would survive
only if it could “eat” the kind of living matter already present. Thus
it, too, must be of the same kind.
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There is no conservation of the number of right-handed mole-
cules. Once started, we could keep increasing the number of right-
handed molecules. So the presumption is, then, that the
phenomena in the case of life do not show a lack of symmetry in
physical laws, but do show, on the contrary, the universal nature
and the commonness of ultimate origin of all creatures on earth,
in the sense described above.

2-5 Polar and axial vectors
Now we go further. We observe that in physics there are a lot of
other places where we have “right-hand” and “left-hand” rules. As
a matter of fact, when we learned about vector analysis we learned
about the right-hand rules we have to use in order to get the angular
momentum, torque, magnetic field, and so on, to come out right.
The force on a charge moving in a magnetic field, for example, is
F = qv# B. In a given situation, in which we know F, v, and B,
isn’t that equation enough to define right-handedness? As a matter
of fact, if we go back and look at where the vectors came from, we
know that the “right-hand rule” was merely a convention; it was a
trick. The original quantities, like the angular momenta and the an-
gular velocities, and things of this kind, were not really vectors at
all! They are all somehow associated with a certain plane, and it is
just because there are three dimensions in space that we can associate
the quantity with a direction perpendicular to that plane. Of the
two possible directions, we chose the “right-hand” direction.

So if the laws of physics are symmetrical, we should find that if
some demon were to sneak into all the physics laboratories and re-
place the word “right” for “left” in every book in which “right-hand
rules” are given, and instead we were to use all “left-hand rules”
uniformly, then it should make no difference whatever in the phys-
ical laws.

Let us give an illustration. There are two kinds of vectors. There
are “honest” vectors, for example a step Δr in space. If in our ap-
paratus there is a piece here and something else there, then in a
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mirror apparatus there will be the image piece and the image some-
thing else, and if we draw a vector from the “piece” to the “some-
thing else,” one vector is the mirror image of the other (Figure 2-2).
The vector arrow changes its head, just as the whole space turns in-
side out; such a vector we call a polar vector.

But the other kind of vector, which has to do with rotations, is
of a different nature. For example, suppose that in three dimensions
something is rotating as shown in Figure 2-3. Then if we look at it
in a mirror, it will be rotating as indicated, namely, as the mirror
image of the original rotation. Now we have agreed to represent
the mirror rotation by the same rule, it is a “vector” which, on re-
flection, does not change about as the polar vector does, but is re-
versed relative to the polar vectors and to the geometry of the space;
such a vector is called an axial vector.

Now if the law of reflection symmetry is right in physics, then
it must be true that the equations must be so designed that if we
change the sign of each axial vector and each cross-product of vec-
tors, which would be what corresponds to reflection, nothing will
happen. For instance, when we write a formula which says that the
angular momentum is L = r# p, that equation is all right, because
if we change to a left-hand coordinate system, we change the sign
of L, but p and r do not change; the cross-product sign is changed,
since we must change from a right-hand rule to a left-hand rule.
As another example, we know that the force on a charge moving
in a magnetic field is F = qv# B, but if we change from a right-
to a left-handed system, since F and v are known to be polar vectors
the sign change required by the cross-product must be cancelled
by a sign change in B, which means that B must be an axial vector.
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Figure 2-2 A step in space and its mirror image.
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In other words, if we make such a reflection, B must go to –B. So
if we change our coordinates from right to left, we must also change
the poles of magnets from north to south.

Let us see how that works in an example. Suppose that we have
two magnets, as in Figure 2-4. One is a magnet with the coils
going around a certain way, and with current in a given direction.
The other magnet looks like the reflection of the first magnet in a
mirror—the coil will wind the other way, everything that happens
inside the coil is exactly reversed, and the current goes as shown.
Now, from the laws for the production of magnetic fields, which we
do not know yet officially, but which we most likely learned in high
school, it turns out that the magnetic field is as shown in the figure.
In one case the pole is a south magnetic pole, while in the other
magnet the current is going the other way and the magnetic field is
reversed—it is a north magnetic pole. So we see that when we go
from right to left we must indeed change from north to south!
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Figure 2-3 A rotating wheel and its mirror image. Note that the
angular velocity “vector” is not reversed in direction.

Figure 2-4 A magnet and its mirror image.
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Never mind changing north to south; these too are mere con-
ventions. Let us talk about phenomena. Suppose, now, that we have
an electron moving through one field, going into the page. Then,
if we use the formula for the force, v# B (remember the charge is
minus), we find that the electron will deviate in the indicated di-
rection according to the physical law. So the phenomenon is that
we have a coil with a current going in a specified sense and an elec-
tron curves in a certain way—that is the physics—never mind how
we label everything.

Now let us do the same experiment with a mirror: we send an
electron through in a corresponding direction and now the force is
reversed, if we calculate it from the same rule, and that is very good
because the corresponding motions are then mirror images!

2-6 Which hand is right?
So the fact of the matter is that in studying any phenomenon there
are always two right-hand rules, or an even number of them, and
the net result is that the phenomena always look symmetrical. In
short, therefore, we cannot tell right from left if we also are not
able to tell north from south. However, it may seem that we can
tell the north pole of a magnet. The north pole of a compass needle,
for example, is one that points to the north. But of course that is
again a local property that has to do with geography of the earth;
that is just like talking about in which direction is Chicago, so it
does not count. If we have seen compass needles, we may have no-
ticed that the north-seeking pole is a sort of bluish color. But that
is just due to the man who painted the magnet. These are all local,
conventional criteria.

However, if a magnet were to have the property that if we looked
at it closely enough we would see small hairs growing on its north
pole but not on its south pole, if that were the general rule, or if there
were any unique way to distinguish the north from the south pole
of a magnet, then we could tell which of the two cases we actually
had, and that would be the end of the law of reflection symmetry.
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To illustrate the whole problem still more clearly, imagine that
we were talking to a Martian, or someone very far away, by tele-
phone. We are not allowed to send him any actual samples to in-
spect; for instance, if we could send light, we could send him
right-hand circularly polarized light and say, “That is right-hand
light—just watch the way it is going.” But we cannot give him any-
thing, we can only talk to him. He is far away, or in some strange
location, and he cannot see anything we can see. For instance, we
cannot say, “Look at Ursa major; now see how those stars are
arranged. What we mean by ‘right’ is . . .” We are only allowed to
telephone him.

Now we want to tell him all about us. Of course, first we start defin-
ing numbers, and say, “Tick, tick, two, tick, tick, tick, three . . . ,” so
that gradually he can understand a couple of words, and so on.
After a while we may become very familiar with this fellow, and he
says, “What do you guys look like?” We start to describe ourselves,
and say, “Well, we are six feet tall.” He says, “Wait a minute, what
is six feet?” Is it possible to tell him what six feet is? Certainly! We
say, “You know about the diameter of hydrogen atoms—we are
17,000,000,000 hydrogen atoms high!” That is possible because
physical laws are not invariant under change of scale, and therefore
we can define an absolute length. And so we define the size of the
body, and tell him what the general shape is—it has prongs with
five bumps sticking out on the ends, and so on, and he follows us
along, and we finish describing how we look on the outside, pre-
sumably without encountering any particular difficulties. He is
even making a model of us as we go along. He says, “My, you are
certainly very handsome fellows; now what is on the inside?” So we
start to describe the various organs on the inside, and we come to
the heart, and we carefully describe the shape of it, and say, “Now
put the heart on the left side.” He says, “Duhhh—the left side?”
Now our problem is to describe to him which side the heart goes
on without his ever seeing anything that we see, and without our
ever sending any sample to him of what we mean by “right”—no
standard right-handed object. Can we do it?
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2-7 Parity is not conserved!
It turns out that the laws of gravitation, the laws of electricity and
magnetism, nuclear forces, all satisfy the principle of reflection sym-
metry, so these laws, or anything derived from them, cannot be
used. But associated with the many particles that are found in na-
ture there is a phenomenon called beta decay, or weak decay. One
of the examples of weak decay, in connection with a particle dis-
covered in about 1954, posed a strange puzzle. There was a certain
charged particle which disintegrated into three π-mesons, as shown
schematically in Figure 2-5. This particle was called, for a while, a
τ-meson. Now in Figure 2-5 we also see another particle which dis-
integrates into two mesons; one must be neutral, from the conser-
vation of charge. This particle was called a i-meson. So on the one
hand we have a particle called a τ, which disintegrates into three π-
mesons, and a i, which disintegrates into two π-mesons. Now it
was soon discovered that the τ and the i are almost equal in mass;
in fact, within the experimental error, they are equal. Next, the
length of time it took for them to disintegrate into three π’s and
two π’s was found to be almost exactly the same; they live the same
length of time. Next, whenever they were made, they were made
in the same proportions, say, 14 percent τ’s to 86 percent i’s.

Anyone in his right mind realizes immediately that they must
be the same particle, that we merely produce an object which has
two different ways of disintegrating—not two different particles.
This object that can disintegrate in two different ways has, there-
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Figure 2-5 A schematic diagram of the disintegration of a τ+ and a i+

particle.
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fore, the same lifetime and the same production ratio (because this
is simply the ratio of the odds with which it disintegrates into these
two kinds).

However, it was possible to prove (and we cannot here explain
at all how), from the principle of reflection symmetry in quantum
mechanics, that it was impossible to have these both come from the
same particle—the same particle could not disintegrate in both of
these ways. The conservation law corresponding to the principle of
reflection symmetry is something which has no classical analog, and
so this kind of quantum-mechanical conservation was called the con-
servation of parity. So, it was a result of the conservation of parity
or, more precisely, from the symmetry of the quantum-mechanical
equations of the weak decays under reflection, that the same parti-
cle could not go into both, so it must be some kind of coincidence
of masses, lifetimes, and so on. But the more it was studied, the
more remarkable the coincidence, and the suspicion gradually grew
that possibly the deep law of the reflection symmetry of nature may
be false.

As a result of this apparent failure, the physicists Lee and Yang
suggested that other experiments be done in related decays to try
to test whether the law was correct in other cases. The first such ex-
periment was carried out by Miss Wu from Columbia, and was
done as follows. Using a very strong magnet at a very low temper-
ature, it turns out that a certain isotope of cobalt, which disinte-
grates by emitting an electron, is magnetic, and if the temperature
is low enough that the thermal oscillations do not jiggle the atomic
magnets about too much, they line up in the magnetic field. So the
cobalt atoms will all line up in this strong field. They then disinte-
grate, emitting an electron, and it was discovered that when the
atoms were lined up in a field whose B vector points upward, most
of the electrons were emitted in a downward direction.

If one is not really “hep” to the world, such a remark does not
sound like anything of significance, but if one appreciates the prob-
lems and interesting things in the world, then he sees that it is a
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most dramatic discovery: When we put cobalt atoms in an ex-
tremely strong magnetic field, more disintegration electrons go
down than up. Therefore if we were to put it in a corresponding
experiment in a “mirror,” in which the cobalt atoms would be lined
up in the opposite direction, they would spit their electrons up, not
down; the action is unsymmetrical. The magnet has grown hairs! The
south pole of a magnet is of such a kind that the electrons in a β-
disintegration tend to go away from it; that distinguishes, in a phys-
ical way, the north pole from the south pole.

After this, a lot of other experiments were done: the disintegra-
tion of the π into μ and v; μ into an electron and two neutrinos;
nowadays, the Λ into proton and π; disintegration of Σ’s; and many
other disintegrations. In fact, in almost all cases where it could be
expected, all have been found not to obey reflection symmetry! Fun-
damentally, the law of reflection symmetry, at this level in physics,
is incorrect.

In short, we can tell a Martian where to put the heart: we say,
“Listen, build yourself a magnet, and put the coils in, and put the
current on, and then take some cobalt and lower the temperature.
Arrange the experiment so the electrons go from the foot to the
head, then the direction in which the current goes through the coils
is the direction that goes in on what we call the right and comes
out on the left.” So it is possible to define right and left, now, by
doing an experiment of this kind.

There are a lot of other features that were predicted. For exam-
ple, it turns out that the spin, the angular momentum, of the
cobalt nucleus before disintegration is 5 units of ћ, and after dis-
integration it is 4 units. The electron carries spin angular momen-
tum, and there is also a neutrino involved. It is easy to see from
this that the electron must carry its spin angular momentum
aligned along its direction of motion, the neutrino likewise. So it
looks as though the electron is spinning to the left, and that was
also checked. In fact, it was checked right here at Caltech by
Boehm and Wapstra, that the electrons spin mostly to the left.
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(There were some other experiments that gave the opposite answer,
but they were wrong!)

The next problem, of course, was to find the law of the failure
of parity conservation. What is the rule that tells us how strong the
failure is going to be? The rule is this: it occurs only in these very
slow reactions, called weak decays, and when it occurs, the rule is
that the particles which carry spin, like the electron, neutrino, and
so on, come out with a spin tending to the left. That is a lopsided
rule; it connects a polar vector velocity and an axial vector angular
momentum, and says that the angular momentum is more likely
to be opposite to the velocity than along it.

Now that is the rule, but today we do not really understand the
whys and wherefores of it. Why is this the right rule, what is the
fundamental reason for it, and how is it connected to anything else?
At the moment we have been so shocked by the fact that this thing
is unsymmetrical that we have not been able to recover enough to
understand what it means with regard to all the other rules. How-
ever, the subject is interesting, modern, and still unsolved, so it
seems appropriate that we discuss some of the questions associated
with it.

2-8 Antimatter
The first thing to do when one of the symmetries is lost is to im-
mediately go back over the list of known or assumed symmetries
and ask whether any of the others are lost. Now we did not mention
one operation on our list, which must necessarily be questioned,
and that is the relation between matter and antimatter. Dirac pre-
dicted that in addition to electrons there must be another particle,
called the positron (discovered at Caltech by Anderson), that is
necessarily related to the electron. All the properties of these two
particles obey certain rules of correspondence: the energies are
equal; the masses are equal; the charges are reversed; but, more im-
portant than anything, the two of them, when they come together,
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can annihilate each other and liberate their entire mass in the form
of energy, say γ-rays. The positron is called an antiparticle to the
electron, and these are the characteristics of a particle and its an-
tiparticle. It was clear from Dirac’s argument that all the rest of the
particles in the world should also have corresponding antiparticles.
For instance, for the proton there should be an antiproton, which
is now symbolized by a . The would have a negative electrical
charge and the same mass as a proton, and so on. The most impor-
tant feature, however, is that a proton and an antiproton coming
together can annihilate each other. The reason we emphasize this
is that people do not understand it when we say there is a neutron
and also an antineutron, because they say, “A neutron is neutral, so
how can it have the opposite charge?” The rule of the “anti” is not
just that it has the opposite charge, it has a certain set of properties,
the whole lot of which are opposite. The antineutron is distin-
guished from the neutron in this way: if we bring two neutrons to-
gether, they just stay as two neutrons, but if we bring a neutron
and an antineutron together, they annihilate each other with a great
explosion of energy being liberated, with various π-mesons, γ-rays,
and whatnot.

Now if we have antineutrons, antiprotons, and antielectrons, we
can make antiatoms, in principle. They have not been made yet,
but it is possible in principle. For instance, a hydrogen atom has a
proton in the center with an electron going around outside. Now
imagine that somewhere we can make an antiproton with a
positron going around, would it go around? Well, first of all, the
antiproton is electrically negative and the antielectron is electrically
positive, so they attract each other in a corresponding manner—
the masses are all the same; everything is the same. It is one of the
principles of the symmetry of physics, the equations seem to show,
that if a clock, say, were made of matter on one hand, and then we
made the same clock of antimatter, it would run in this way. (Of
course, if we put the clocks together, they would annihilate each
other, but that is different.)

An immediate question then arises. We can build, out of matter,

p-p-
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two clocks, one which is “left-hand” and one which is “right-hand.”
For example, we could build a clock which is not built in a simple
way, but has cobalt and magnets and electron detectors which de-
tect the presence of β-decay electrons and count them. Each time
one is counted, the second hand moves over. Then the mirror clock,
receiving fewer electrons, will not run at the same rate. So evidently
we can make two clocks such that the left-hand clock does not agree
with the right-hand one. Let us make, out of matter, a clock which
we call the standard or right-hand clock. Now let us make, also out
of matter, a clock which we call the left-hand clock. We have just
discovered that, in general, these two will not run the same way;
prior to that famous physical discovery, it was thought that they
would. Now it was also supposed that matter and antimatter were
equivalent. That is, if we made an antimatter clock, right-hand, the
same shape, then it would run the same as the right-hand matter
clock, and if we made the same clock to the left it would run the
same. In other words, in the beginning it was believed that all four
of these clocks were the same; now of course we know that the
right-hand and left-hand matter are not the same. Presumably,
therefore, the right-handed antimatter and the left-handed anti-
matter are not the same.

So the obvious question is, which goes with which, if either? In
other words, does the right-handed matter behave the same way as
the right-handed antimatter? Or does the right-handed matter be-
have the same way as the left-handed antimatter? β-decay experi-
ments, using positron decay instead of electron decay, indicate that
this is the interconnection: matter to the “right” works the same
way as antimatter to the “left.”

Therefore, at long last, it is really true that right and left sym-
metry is still maintained! If we made a left-hand clock, but made
it out of the other kind of matter, antimatter instead of matter, it
would run in the same way. So what has happened is that instead
of having two independent rules in our list of symmetries, two of
these rules go together to make a new rule, which says that matter
to the right is symmetrical with antimatter to the left.
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So if our Martian is made of antimatter and we give him instruc-
tions to make this “right”-handed model like us, it will, of course,
come out the other way around. What would happen when, after
much conversation back and forth, we each have taught the other
to make spaceships and we meet halfway in empty space? We have
instructed each other on our traditions, and so forth, and the two
of us come rushing out to shake hands. Well, if he puts out his left
hand, watch out!

2-9 Broken symmetries
The next question is, what can we make out of laws which are
nearly symmetrical? The marvelous thing about it all is that for such
a wide range of important, strong phenomena—nuclear forces,
electrical phenomena, and even weak ones like gravitation—over a
tremendous range of physics, all the laws for these seem to be sym-
metrical. On the other hand, this little extra piece says, “No, the
laws are not symmetrical!” How is it that nature can be almost sym-
metrical, but not perfectly symmetrical? What shall we make of
this? First, do we have any other examples? The answer is, we do,
in fact, have a few other examples. For instance, the nuclear part
of the force between proton and proton, between neutron and neu-
tron, and between neutron and proton, is all exactly the same—
there is a symmetry for nuclear forces, a new one, that we can
interchange neutron and proton—but it evidently is not a general
symmetry, for the electrical repulsion between two protons at a dis-
tance does not exist for neutrons. So it is not generally true that we
can always replace a proton with a neutron, but only to a good ap-
proximation. Why good ? Because the nuclear forces are much
stronger than the electrical forces. So this is an “almost” symmetry
also. So we do have examples in other things.

We have, in our minds, a tendency to accept symmetry as some
kind of perfection. In fact it is like the old idea of the Greeks that
circles were perfect, and it was rather horrible to believe that the
planetary orbits were not circles, but only nearly circles. The dif-
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ference between being a circle and being nearly a circle is not a
small difference, it is a fundamental change so far as the mind is
concerned. There is a sign of perfection and symmetry in a circle
that is not there the moment the circle is slightly off—that is the
end of it—it is no longer symmetrical. Then the question is why it
is only nearly a circle—that is a much more difficult question. The
actual motion of the planets, in general, should be ellipses, but dur-
ing the ages, because of tidal forces, and so on, they have been made
almost symmetrical. Now the question is whether we have a similar
problem here. The problem from the point of view of the circles is
if they were perfect circles there would be nothing to explain, that
is clearly simple. But since they are only nearly circles, there is a lot
to explain, and the result turned out to be a big dynamical problem,
and now our problem is to explain why they are nearly symmetrical
by looking at tidal forces and so on.

So our problem is to explain where symmetry comes from. Why
is nature so nearly symmetrical? No one has any idea why. The only
thing we might suggest is something like this: There is a gate in
Japan, a gate in Neiko, which is sometimes called by the Japanese
the most beautiful gate in all Japan; it was built in a time when
there was great influence from Chinese art. This gate is very elab-
orate, with lots of gables and beautiful carving and lots of columns
and dragon heads and princes carved into the pillars, and so on.
But when one looks closely he sees that in the elaborate and com-
plex design along one of the pillars, one of the small design ele-
ments is carved upside down; otherwise the thing is completely
symmetrical. If one asks why this is, the story is that it was carved
upside down so that the gods will not be jealous of the perfection
of man. So they purposely put an error in there, so that the gods
would not be jealous and get angry with human beings.

We might like to turn the idea around and think that the true
explanation of the near symmetry of nature is this: that God made
the laws only nearly symmetrical so that we should not be jealous
of His perfection!
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T H E  S P E C I A L  T H E O RY  
O F  R E L AT I V I T Y

3-1 The principle of relativity
For over 200 years the equations of motion enunciated by
Newton were believed to describe nature correctly, and the first

time that an error in these laws was discovered, the way to correct
it was also discovered. Both the error and its correction were dis-
covered by Einstein in 1905.

Newton’s Second Law, which we have expressed by the equation 

F = d(mv)/dt,

was stated with the tacit assumption that m is a constant, but we
now know that this is not true, and that the mass of a body in-
creases with velocity. In Einstein’s corrected formula m has the value 

, (3.1)

where the “rest mass” m0 represents the mass of a body that is not mov-
ing and c is the speed of light, which is about 3 # 105 km · sec–1 or
about 186,000 mi · sec–1.

For those who want to learn just enough about it so they can
solve problems, that is all there is to the theory of relativity—it just
changes Newton’s laws by introducing a correction factor to the
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mass. From the formula itself it is easy to see that this mass increase
is very small in ordinary circumstances. If the velocity is even as
great as that of a satellite, which goes around the earth at 5 mi/sec,
then v/c = 5/186,000: putting this value into the formula shows
that the correction to the mass is only one part in two to three bil-
lion, which is nearly impossible to observe. Actually, the correctness
of the formula has been amply confirmed by the observation of
many kinds of particles, moving at speeds ranging up to practically
the speed of light. However, because the effect is ordinarily so small,
it seems remarkable that it was discovered theoretically before it
was discovered experimentally. Empirically, at a sufficiently high
velocity, the effect is very large, but it was not discovered that way.
Therefore it is interesting to see how a law that involved so delicate
a modification (at the time when it was first discovered) was
brought to light by a combination of experiments and physical rea-
soning. Contributions to the discovery were made by a number of
people, the final result of whose work was Einstein’s discovery.

There are really two Einstein theories of relativity. This chapter
is concerned with the Special Theory of Relativity, which dates
from 1905. In 1915 Einstein published an additional theory, called
the General Theory of Relativity. This latter theory deals with the
extension of the Special Theory to the case of the law of gravitation;
we shall not discuss the General Theory here.

The principle of relativity was first stated by Newton, in one of
his corollaries to the laws of motion: “The motions of bodies in-
cluded in a given space are the same among themselves, whether
that space is at rest or moves uniformly forward in a straight line.”
This means, for example, that if a spaceship is drifting along at a
uniform speed, all experiments performed in the spaceship and all
the phenomena in the spaceship will appear the same as if the ship
were not moving, provided, of course, that one does not look out-
side. That is the meaning of the principle of relativity. This is a
simple enough idea, and the only question is whether it is true that
in all experiments performed inside a moving system the laws of
physics will appear the same as they would if the system were stand-
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ing still. Let us first investigate whether Newton’s laws appear the
same in the moving system.

Suppose that Moe is moving in the x-direction with a uniform
velocity u, and he measures the position of a certain point, shown
in Figure 3-1. He designates the “x-distance” of the point in his co-
ordinate system as x'. Joe is at rest, and measures the position of
the same point, designating its x-coordinate in his system as x. The
relationship of the coordinates in the two systems is clear from the
diagram. After time t Moe’s origin has moved a distance ut, and if
the two systems originally coincided,

x' = x – ut,
y' = y,
z' = z, (3.2)
t' = t.

If we substitute this transformation of coordinates into Newton’s
laws we find that these laws transform to the same laws in the
primed system; that is, the laws of Newton are of the same form in
a moving system as in a stationary system, and therefore it is im-
possible to tell, by making mechanical experiments, whether the
system is moving or not.

The principle of relativity has been used in mechanics for a long
time. It was employed by various people, in particular Huygens, to
obtain the rules for the collision of billiard balls, in much the same
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Figure 3-1 Two coordinate systems in uniform relative motion along
their x-axes. 
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way as we used it in Chapter 10* to discuss the conservation of mo-
mentum. In the past century interest in it was heightened as the
result of investigations into the phenomena of electricity, magnet-
ism, and light. A long series of careful studies of these phenomena
by many people culminated in Maxwell’s equations of the electro-
magnetic field, which describe electricity, magnetism, and light in
one uniform system. However, the Maxwell equations did not seem
to obey the principle of relativity. That is, if we transform Maxwell’s
equations by the substitution of equations 3.2, their form does not
remain the same; therefore, in a moving spaceship the electrical and
optical phenomena should be different from those in a stationary
ship. Thus one could use these optical phenomena to determine
the speed of the ship; in particular, one could determine the ab-
solute speed of the ship by making suitable optical or electrical mea-
surements. One of the consequences of Maxwell’s equations is that
if there is a disturbance in the field such that light is generated,
these electromagnetic waves go out in all directions equally and at
the same speed c, or 186,000 mi/sec. Another consequence of the
equations is that if the source of the disturbance is moving, the
light emitted goes through space at the same speed c. This is anal-
ogous to the case of sound, the speed of sound waves being likewise
independent of the motion of the source.

This independence of the motion of the source, in the case of
light, brings up an interesting problem:

Suppose we are riding in a car that is going at a speed u, and
light from the rear is going past the car with speed c. Differentiating
the first equation in (3.2) gives 

dx'/dt = dx/dt – u,

which means that according to the Galilean transformation the ap-
parent speed of the passing light, as we measure it in the car, should
not be c but should be c – u. For instance, if the car is going
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100,000 mi/sec, and the light is going 186,000 mi/sec, then ap-
parently the light going past the car should go 86,000 mi/sec. In
any case, by measuring the speed of the light going past the car (if
the Galilean transformation is correct for light), one could deter-
mine the speed of the car. A number of experiments based on this
general idea were performed to determine the velocity of the earth,
but they all failed—they gave no velocity at all. We shall discuss one
of these experiments in detail, to show exactly what was done and
what was the matter; something was the matter, of course, some-
thing was wrong with the equations of physics. What could it be?

3-2 The Lorentz transformation
When the failure of the equations of physics in the above case came
to light, the first thought that occurred was that the trouble must
lie in the new Maxwell equations of electrodynamics, which were
only 20 years old at the time. It seemed almost obvious that these
equations must be wrong, so the thing to do was to change them
in such a way that under the Galilean transformation the principle
of relativity would be satisfied. When this was tried, the new terms
that had to be put into the equations led to predictions of new elec-
trical phenomena that did not exist at all when tested experimen-
tally, so this attempt had to be abandoned. Then it gradually
became apparent that Maxwell’s laws of electrodynamics were cor-
rect, and the trouble must be sought elsewhere.

In the meantime, H. A. Lorentz noticed a remarkable and curi-
ous thing when he made the following substitutions in the Maxwell
equations:

(3.3)
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namely, Maxwell’s equations remain in the same form when this
transformation is applied to them! Equations (3.3) are known as a
Lorentz transformation. Einstein, following a suggestion originally
made by Poincaré, then proposed that all the physical laws should
be of such a kind that they remain unchanged under a Lorentz trans-
formation. In other words, we should change, not the laws of elec-
trodynamics, but the laws of mechanics. How shall we change
Newton’s laws so that they will remain unchanged by the Lorentz
transformation? If this goal is set, we then have to rewrite Newton’s
equations in such a way that the conditions we have imposed are
satisfied. As it turned out, the only requirement is that the mass m
in Newton’s equations must be replaced by the form shown in Eq.
(3.1). When this change is made, Newton’s laws and the laws of
electrodynamics will harmonize. Then if we use the Lorentz trans-
formation in comparing Moe’s measurements with Joe’s, we shall
never be able to detect whether either is moving, because the form
of all the equations will be the same in both coordinate systems!

It is interesting to discuss what it means that we replace the
old transformation between the coordinates and time with a new
one, because the old one (Galilean) seems to be self-evident, and
the new one (Lorentz) looks peculiar. We wish to know whether
it is logically and experimentally possible that the new, and not
the old, transformation can be correct. To find that out, it is not
enough to study the laws of mechanics but, as Einstein did, we
too must analyze our ideas of space and time in order to under-
stand this transformation. We shall have to discuss these ideas and
their implications for mechanics at some length, so we say in ad-
vance that the effort will be justified, since the results agree with
experiment.

3-3 The Michelson-Morley experiment
As mentioned above, attempts were made to determine the absolute
velocity of the earth through the hypothetical “ether” that was sup-
posed to pervade all space. The most famous of these experiments
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is one performed by Michelson and Morley in 1887. It was 18 years
later before the negative results of the experiment were finally ex-
plained, by Einstein.

The Michelson-Morley experiment was performed with an ap-
paratus like that shown schematically in Figure 3-2. This apparatus
is essentially comprised of a light source A, a partially silvered glass
plate B, and two mirrors C and E, all mounted on a rigid base. The
mirrors are placed at equal distances L from B. The plate B splits
an oncoming beam of light, and the two resulting beams continue
in mutually perpendicular directions to the mirrors, where they are
reflected back to B. On arriving back at B, the two beams are re-
combined as two superposed beams, D and F. If the time taken for
the light to go from B to E and back is the same as the time from
B to C and back, the emerging beams D and F will be in phase and
will reinforce each other, but if the two times differ slightly, the
beams will be slightly out of phase and interference will result. If
the apparatus is “at rest” in the ether, the times should be precisely
equal, but if it is moving toward the right with a velocity u, there
should be a difference in the times. Let us see why.
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Figure 3-2 Schematic diagram of the Michelson-Morley experiment.
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First, let us calculate the time required for the light to go from
B to E and back. Let us say that the time for light to go from plate B
to mirror E is t1, and the time for the return is t2. Now, while the
light is on its way from B to the mirror, the apparatus moves a dis-
tance ut1, so the light must traverse a distance L + ut1, at the speed
c. We can also express this distance as ct1, so we have

ct1 = L + ut1, or t1 = L/(c – u).

(This result is also obvious from the point of view that the velocity
of light relative to the apparatus is c – u, so the time is the length
L divided by c – u.) In a like manner, the time t2 can be calculated.
During this time the plate B advances a distance ut2, so the return
distance of the light is L – ut2. Then we have

ct2 = L – ut2, or t2 = L/(c + u).

Then the total time is

t1 + t2 = 2Lc/(c2 – u2).

For convenience in later comparison of times we write this as

. (3.4)

Our second calculation will be of the time t3 for the light to go
from B to the mirror C. As before, during time t3 the mirror C
moves to the right a distance ut3 to the position C'; in the same
time, the light travels a distance ct3 along the hypotenuse of a tri-
angle, which is BC'. For this right triangle we have

(ct3)2 = L2 + (ut3)2

or
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For the return trip from C' the distance is the same, as can be seen
from the symmetry of the figure; therefore the return time is also
the same, and the total time is 2t3. With a little rearrangement of
the form we can write

. (3.5)

We are now able to compare the times taken by the two beams
of light. In expressions (3.4) and (3.5) the numerators are identical,
and represent the time that would be taken if the apparatus were
at rest. In the denominators, the term u2/c2 will be small, unless u
is comparable in size to c. The denominators represent the modifi-
cations in the times caused by the motion of the apparatus. And
behold, these modifications are not the same—the time to go to C
and back is a little less than the time to E and back, even though
the mirrors are equidistant from B, and all we have to do is to mea-
sure that difference with precision.

Here a minor technical point arises—suppose the two lengths L
are not exactly equal? In fact, we surely cannot make them exactly
equal. In that case we simply turn the apparatus 90 degrees, so that
BC is in the line of motion and BE is perpendicular to the motion.
Any small difference in length then becomes unimportant, and
what we look for is a shift in the interference fringes when we rotate
the apparatus.

In carrying out the experiment, Michelson and Morley oriented
the apparatus so that the line BE was nearly parallel to the earth’s
motion in its orbit (at certain times of the day and night). This or-
bital speed is about 18 miles per second, and any “ether drift”
should be at least that much at some time of the day or night and
at some time during the year. The apparatus was amply sensitive
to observe such an effect, but no time difference was found—the
velocity of the earth through the ether could not be detected. The
result of the experiment was null.

The result of the Michelson-Morley experiment was very puzzling

/

/t
c u

L
u c

L c2 2
1

2
3 2 2 2 2=

-
=

-

57

The Special Theory of Relativity 

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 57



and most disturbing. The first fruitful idea for finding a way out
of the impasse came from Lorentz. He suggested that material bod-
ies contract when they are moving, and that this foreshortening is
only in the direction of the motion, and also, that if the length is
L0 when a body is at rest, then when it moves with speed u parallel
to its length, the new length, which we call L|| (L-parallel), is given
by

. (3.6)

When this modification is applied to the Michelson-Morley inter-
ferometer apparatus the distance from B to C does not change, but
the distance from B to E is shortened to . Therefore
Eq. (3.5) is not changed, but the L of Eq. (3.4) must be changed
in accordance with Eq. (3.6). When this is done we obtain 

(3.7)

Comparing this result with Eq. (3.5), we see that t1 + t2 = 2t3. So
if the apparatus shrinks in the manner just described, we have a
way of understanding why the Michelson-Morley experiment gives
no effect at all. Although the contraction hypothesis successfully
accounted for the negative result of the experiment, it was open to
the objection that it was invented for the express purpose of ex-
plaining away the difficulty, and was too artificial. However, in
many other experiments to discover an ether wind, similar difficul-
ties arose, until it appeared that nature was in a “conspiracy” to
thwart man by introducing some new phenomenon to undo every
phenomenon that he thought would permit a measurement of u.

It was ultimately recognized, as Poincaré pointed out, that a com-
plete conspiracy is itself a law of nature! Poincaré then proposed that
there is such a law of nature, that it is not possible to discover an
ether wind by any experiment; that is, there is no way to determine
an absolute velocity.
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3-4 Transformation of time
In checking out whether the contraction idea is in harmony with
the facts in other experiments, it turns out that everything is correct
provided that the times are also modified, in the manner expressed
in the fourth equation of the set (3.3). That is because the time t3,
calculated for the trip from B to C and back, is not the same when
calculated by a man performing the experiment in a moving space-
ship as when calculated by a stationary observer who is watching
the spaceship. To the man in the ship the time is simply 2L/c, but
to the other observer it is (Eq. 3.5). In other
words, when the outsider sees the man in the spaceship lighting a
cigar, all the actions appear to be slower than normal, while to the
man inside, everything moves at a normal rate. So not only must
the lengths shorten, but also the time-measuring instruments
(“clocks”) must apparently slow down. That is, when the clock in
the spaceship records 1 second elapsed, as seen by the man in the
ship, it shows second to the man outside.

This slowing of the clocks in a moving system is a very peculiar
phenomenon, and is worth an explanation. In order to understand
this, we have to watch the machinery of the clock and see what
happens when it is moving. Since that is rather difficult, we shall
take a very simple kind of clock. The one we choose is rather a silly
kind of clock, but it will work in principle: it is a rod (meter stick)
with a mirror at each end, and when we start a light signal between
the mirrors, the light keeps going up and down, making a click
every time it comes down, like a standard ticking clock. We build
two such clocks, with exactly the same lengths, and synchronize
them by starting them together; then they agree always thereafter,
because they are the same in length, and light always travels with
speed c. We give one of these clocks to the man to take along in his
spaceship, and he mounts the rod perpendicular to the direction
of motion of the ship; then the length of the rod will not change.
How do we know that perpendicular lengths do not change? The

/ /u c1 1 2 2-
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men can agree to make marks on each other’s y-meter stick as they
pass each other. By symmetry, the two marks must come at the
same y- and y'-coordinates, since otherwise, when they get together
to compare results, one mark will be above or below the other, and
so we could tell who was really moving.

Now let us see what happens to the moving clock. Before the
man took it aboard, he agreed that it was a nice, standard clock,
and when he goes along in the spaceship he will not see anything
peculiar. If he did, he would know he was moving—if anything at
all changed because of the motion, he could tell he was moving.
But the principle of relativity says this is impossible in a uniformly
moving system, so nothing has changed. On the other hand, when
the external observer looks at the clock going by, he sees that the
light, in going from mirror to mirror, is “really” taking a zigzag
path, since the rod is moving sideways all the while. We have al-
ready analyzed such a zigzag motion in connection with the
Michelson-Morley experiment. If in a given time the rod moves
forward a distance proportional to u in Figure 3-3, the distance the
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Figure 3-3 (a) A “light clock” at rest in the S' system. (b) The same
clock, moving through the S system. (c) Illustration of the
diagonal path taken by the light beam in a moving “light
clock.”
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light travels in the same time is proportional to c, and the vertical
distance is therefore proportional to .

That is, it takes a longer time for light to go from end to end in
the moving clock than in the stationary clock. Therefore the ap-
parent time between clicks is longer for the moving clock, in the
same proportion as shown in the hypotenuse of the triangle (that
is the source of the square root expressions in our equations). From
the figure it is also apparent that the greater u is, the more slowly
the moving clock appears to run. Not only does this particular kind
of clock run more slowly, but if the theory of relativity is correct,
any other clock, operating on any principle whatsoever, would also
appear to run slower, and in the same proportion—we can say this
without further analysis. Why is this so?

To answer the above question, suppose we had two other clocks
made exactly alike with wheels and gears, or perhaps based on ra-
dioactive decay, or something else. Then we adjust these clocks so
they both run in precise synchronism with our first clocks. When
light goes up and back in the first clocks and announces its arrival
with a click, the new models also complete some sort of cycle,
which they simultaneously announce by some doubly coincident
flash, or bong, or other signal. One of these clocks is taken into the
spaceship, along with the first kind. Perhaps this clock will not run
slower, but will continue to keep the same time as its stationary
counterpart, and thus disagree with the other moving clock. Ah no,
if that should happen, the man in the ship could use this mismatch
between his two clocks to determine the speed of his ship, which
we have been supposing is impossible. We need not know anything
about the machinery of the new clock that might cause the effect—
we simply know that whatever the reason, it will appear to run slow,
just like the first one.

Now if all moving clocks run slower, if no way of measuring time
gives anything but a slower rate, we shall just have to say, in a certain
sense, that time itself appears to be slower in a spaceship. All the phe-
nomena there—the man’s pulse rate, his thought processes, the time

c u2 2-
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he takes to light a cigar, how long it takes to grow up and get old—
all these things must be slowed down in the same proportion, be-
cause he cannot tell he is moving. The biologists and medical men
sometimes say it is not quite certain that the time it takes for a
cancer to develop will be longer in a spaceship, but from the view-
point of a modern physicist it is nearly certain; otherwise one
could use the rate of cancer development to determine the speed
of the ship!

A very interesting example of the slowing of time with motion is
furnished by mu-mesons (muons), which are particles that disinte-
grate spontaneously after an average lifetime of 2.2 # 10–6 sec. They
come to the earth in cosmic rays, and can also be produced artifi-
cially in the laboratory. Some of them disintegrate in midair, but
the remainder disintegrate only after they encounter a piece of ma-
terial and stop. It is clear that in its short lifetime a muon cannot
travel, even at the speed of light, much more than 600 meters. But
although the muons are created at the top of the atmosphere, some
10 kilometers up, yet they are actually found in a laboratory down
here, in cosmic rays. How can that be? The answer is that different
muons move at various speeds, some of which are very close to the
speed of light. While from their own point of view they live only
about 2 msec, from our point of view they live considerably longer—
enough longer that they may reach the earth. The factor by which
the time is increased has already been given as . The
average life has been measured quite accurately for muons of differ-
ent velocities, and the values agree closely with the formula.

We do not know why the meson disintegrates or what its ma-
chinery is, but we do know its behavior satisfies the principle of
relativity. That is the utility of the principle of relativity—it permits
us to make predictions, even about things that otherwise we do not
know much about. For example, before we have any idea at all
about what makes the meson disintegrate, we can still predict that
when it is moving at nine-tenths of the speed of light, the apparent
length of time that it lasts is sec; and
our prediction works—that is the good thing about it.
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3-5 The Lorentz contraction
Now let us return to the Lorentz transformation (3.3) and try to
get a better understanding of the relationship between the (x, y, z,
t) and the (x', y', z', t' ) coordinate systems, which we shall call the
S and S' systems, or Joe and Moe systems, respectively. We have al-
ready noted that the first equation is based on the Lorentz sugges-
tion of contraction along the x-direction; how can we prove that a
contraction takes place? In the Michelson-Morley experiment, we
now appreciate that the transverse arm BC cannot change length,
by the principle of relativity; yet the null result of the experiment
demands that the times must be equal. So, in order for the experi-
ment to give a null result, the longitudinal arm BE must appear
shorter, by the square root . What does this contraction
mean, in terms of measurements made by Joe and Moe? Suppose
that Moe, moving with the S' system in the x-direction, is measur-
ing the x'-coordinate of some point with a meter stick. He lays the
stick down x' times, so he thinks the distance is x' meters. From
the viewpoint of Joe in the S system, however, Moe is using a fore-
shortened ruler, so the “real” distance measured is 
meters. Then if the S' system has travelled a distance ut away from
the S system, the S observer would say that the same point, measured
in his coordinates, is at a distance , or

,

which is the first equation of the Lorentz transformation.

3-6 Simultaneity
In an analogous way, because of the difference in time scales, the
denominator expression is introduced into the fourth equation of
the Lorentz transformation. The most interesting term in that equa-
tion is the ux/c2 in the numerator, because that is quite new and
unexpected. Now what does that mean? If we look at the situation
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carefully we see that events that occur at two separate places at the
same time, as seen by Moe in S', do not happen at the same time as
viewed by Joe in S. If one event occurs at point x1 at time t0 and
the other event at x2 and t0 (the same time), we find that the two
corresponding times t'1 and t'2 differ by an amount

.

This circumstance is called “failure of simultaneity at a distance,”
and to make the idea a little clearer let us consider the following
experiment.

Suppose that a man moving in a spaceship (system S' ) has
placed a clock at each end of the ship and is interested in making
sure that the two clocks are in synchronism. How can the clocks
be synchronized? There are many ways. One way, involving very
little calculation, would be first to locate exactly the midpoint be-
tween the clocks. Then from this station we send out a light signal
which will go both ways at the same speed and will arrive at both
clocks, clearly, at the same time. This simultaneous arrival of the
signals can be used to synchronize the clocks. Let us then suppose
that the man in S' synchronizes his clocks by this particular
method. Let us see whether an observer in system S would agree
that the two clocks are synchronous. The man in S' has a right to
believe they are, because he does not know that he is moving. But
the man in S reasons that since the ship is moving forward, the
clock in the front end was running away from the light signal,
hence the light had to go more than halfway in order to catch up;
the rear clock, however, was advancing to meet the light signal, so
this distance was shorter. Therefore the signal reached the rear
clock first, although the man in S' thought that the signals arrived
simultaneously. We thus see that when a man in a spaceship thinks
the times at two locations are simultaneous, equal values of t' in
his coordinate system must correspond to different values of t in
the other coordinate system!
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3-7 Four-vectors
Let us see what else we can discover in the Lorentz transformation.
It is interesting to note that the transformation between the x’s
and t’s is analogous in form to the transformation of the x’s and
y’s that we studied in Chapter 1 for a rotation of coordinates. We
then had 

x' = x cos i + y sin i,
y' = y cos i – x sin i, (3.8)

in which the new x' mixes the old x and y, and the new y' also mixes
the old x and y; similarly, in the Lorentz transformation we find a
new x' which is a mixture of x and t, and a new t' which is a mixture
of t and x. So the Lorentz transformation is analogous to a rotation,
only it is a “rotation” in space and time, which appears to be a
strange concept. A check of the analogy to rotation can be made
by calculating the quantity

x' 2 + y' 2 + z' 2 – c2t' 2 = x2 + y2 + z2 – c2t2. (3.9)

In this equation the first three terms on each side represent, in
three-dimensional geometry, the square of the distance between a
point and the origin (surface of a sphere) which remains unchanged
(invariant) regardless of rotation of the coordinate axes. Similarly,
Eq. (3.9) shows that there is a certain combination which includes
time, that is invariant to a Lorentz transformation. Thus, the anal-
ogy to a rotation is complete, and is of such a kind that vectors,
i.e., quantities involving “components” which transform the same
way as the coordinates and time, are also useful in connection with
relativity.

Thus we contemplate an extension of the idea of vectors, which
we have so far considered to have only space components, to in-
clude a time component. That is, we expect that there will be vec-
tors with four components, three of which are like the components
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of an ordinary vector, and with these will be associated a fourth
component, which is the analog of the time part.

This concept will be analyzed further in the next chapters, where
we shall find that if the ideas of the preceding paragraph are applied
to momentum, the transformation gives three space parts that are
like ordinary momentum components, and a fourth component,
the time part, which is the energy.

3-8 Relativistic dynamics
We are now ready to investigate, more generally, what form the
laws of mechanics take under the Lorentz transformation. [We have
thus far explained how length and time change, but not how we
get the modified formula for m (Eq. 3.1). We shall do this in the
next chapter.] To see the consequences of Einstein’s modification
of m for Newtonian mechanics, we start with the Newtonian law
that force is the rate of change of momentum, or

F = d(mv)/dt.

Momentum is still given by mv, but when we use the new m this
becomes

(3.10) 

This is Einstein’s modification of Newton’s laws. Under this mod-
ification, if action and reaction are still equal (which they may not
be in detail, but are in the long run), there will be conservation of
momentum in the same way as before, but the quantity that is
being conserved is not the old mv with its constant mass, but in-
stead is the quantity shown in (3.10), which has the modified mass.
When this change is made in the formula for momentum, conser-
vation of momentum still works.

Now let us see how momentum varies with speed. In Newtonian
mechanics it is proportional to the speed and, according to (3.10),
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over a considerable range of speed, but small compared with c, it is
nearly the same in relativistic mechanics, because the square-root
expression differs only slightly from 1. But when v is almost equal
to c, the square-root expression approaches zero, and the momen-
tum therefore goes toward infinity.

What happens if a constant force acts on a body for a long time?
In Newtonian mechanics the body keeps picking up speed until it
goes faster than light. But this is impossible in relativistic mechan-
ics. In relativity, the body keeps picking up, not speed, but mo-
mentum, which can continually increase because the mass is
increasing. After a while there is practically no acceleration in the
sense of a change of velocity, but the momentum continues to in-
crease. Of course, whenever a force produces very little change in
the velocity of a body, we say that the body has a great deal of in-
ertia, and that is exactly what our formula for relativistic mass says
(see Eq. 3.10)—it says that the inertia is very great when v is nearly
as great as c. As an example of this effect, to deflect the high-speed
electrons in the synchrotron that is used here at Caltech, we need
a magnetic field that is 2000 times stronger than would be expected
on the basis of Newton’s laws. In other words, the mass of the elec-
trons in the synchrotron is 2000 times as great as their normal mass,
and is as great as that of a proton! That m should be 2000 times m0

means that 1 – v2/c2 must be 1/4,000,000, and that means that
v2/c2 differs from 1 by one part in 4,000,000, or that v differs from
c by one part in 8,000,000, so the electrons are getting pretty close
to the speed of light. If the electrons and light were both to start
from the synchrotron (estimated as 700 feet away) and rush out to
Bridge Lab, which would arrive first? The light, of course, because
light always travels faster.* How much earlier? That is too hard to
tell—instead, we tell by what distance the light is ahead: it is about
1/1000 of an inch, or ¼ the thickness of a piece of paper! When
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the electrons are going that fast their masses are enormous, but their
speed cannot exceed the speed of light.

Now let us look at some further consequences of relativistic
change of mass. Consider the motion of the molecules in a small
tank of gas. When the gas is heated, the speed of the molecules is
increased, and therefore the mass is also increased and the gas is
heavier. An approximate formula to express the increase of mass,
for the case when the velocity is small, can be found by expanding

in a power series, using the
binomial theorem. We get

We see clearly from the formula that the series converges rapidly
when v is small, and the terms after the first two or three are neg-
ligible. So we can write 

(3.11)

in which the second term on the right expresses the increase of mass
due to molecular velocity. When the temperature increases the v2

increases proportionately, so we can say that the increase in mass is
proportional to the increase in temperature. But since is the
kinetic energy in the old-fashioned Newtonian sense, we can also
say that the increase in mass of all this body of gas is equal to the
increase in kinetic energy divided by c2, or Δm = Δ(K.E.)/c2.

3-9 Equivalence of mass and energy
The above observation led Einstein to the suggestion that the mass
of a body can be expressed more simply than by the formula (3.1),
if we say that the mass is equal to the total energy content divided
by c2. If Eq. (3.11) is multiplied by c2 the result is

(3.12)

Here, the term on the left expresses the total energy of a body, and
we recognize the last term as the ordinary kinetic energy. Einstein
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interpreted the large constant term, m0c2, to be part of the total en-
ergy of the body, an intrinsic energy known as the “rest energy.”

Let us follow out the consequences of assuming, with Einstein,
that the energy of a body always equals mc2. As an interesting result,
we shall find the formula (3.1) for the variation of mass with speed,
which we have merely assumed up to now. We start with the body
at rest, when its energy is m0c2. Then we apply a force to the body,
which starts it moving and gives it kinetic energy; therefore, since
the energy has increased, the mass has increased—this is implicit
in the original assumption. So long as the force continues, the en-
ergy and the mass both continue to increase. We have already seen
(Chapter 13*) that the rate of change of energy with time equals
the force times the velocity, or

(3.13)

We also have (Chapter 9*, Eq. 9.1) that F = d(mv)/dt. When these
relations are put together with the definition of E, Eq. (3.13)
becomes

(3.14)

We wish to solve this equation for m. To do this we first use the
mathematical trick of multiplying both sides by 2m, which changes
the equation to

(3.15) 

We need to get rid of the derivatives, which can be accomplished
by integrating both sides. The quantity (2m)dm/dt can be recognized
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as the time derivative of m2, and (2mv) · d(mv)/dt is the time deriv-
ative of (mv)2. So, Eq. (3.15) is the same as

. (3.16) 

If the derivatives of two quantities are equal, the quantities them-
selves differ at most by a constant, say C. This permits us to write 

m2c2 = m2v2 + C. (3.17)

We need to define the constant C more explicitly. Since Eq. (3.17)
must be true for all velocities, we can choose a special case where v
= 0, and say that in this case the mass is m0. Substituting these val-
ues into Eq. (3.17) gives

.

We can now use this value of C in Eq. (3.17), which becomes

. (3.18)

Dividing by c2 and rearranging terms gives 

,

from which we get

. (3.19)

This is the formula (3.1), and is exactly what is necessary for the
agreement between mass and energy in Eq. (3.12).

Ordinarily these energy changes represent extremely slight
changes in mass, because most of the time we cannot generate
much energy from a given amount of material; but in an atomic
bomb of explosive energy equivalent to 20 kilotons of TNT, for ex-
ample, it can be shown that the dirt after the explosion is lighter by
1 gram than the initial mass of the reacting material, because of the
energy that was released, i.e., the released energy had a mass of 1
gram, according to the relationship ΔE = Δ(mc2). This theory of
equivalence of mass and energy has been beautifully verified by ex-
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periments in which matter is annihilated—converted totally to en-
ergy: An electron and a positron come together at rest, each with a
rest mass m0. When they come together they disintegrate and two
gamma rays emerge, each with the measured energy of m0c2. This
experiment furnishes a direct determination of the energy associ-
ated with the existence of the rest mass of a particle.
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R E L AT I V I S T I C  E N E R G Y  
A N D  M O M E N T U M

4-1 Relativity and the philosophers
In this chapter we shall continue to discuss the principle of rel-
ativity of Einstein and Poincaré, as it affects our ideas of physics

and other branches of human thought.
Poincaré made the following statement of the principle of rela-

tivity: “According to the principle of relativity, the laws of physical
phenomena must be the same for a fixed observer as for an observer
who has a uniform motion of translation relative to him, so that
we have not, nor can we possibly have, any means of discerning
whether or not we are carried along in such a motion.”

When this idea descended upon the world, it caused a great stir
among philosophers, particularly the “cocktail-party philosophers,”
who say, “Oh, it is very simple: Einstein’s theory says all is relative!”
In fact, a surprisingly large number of philosophers, not only those
found at cocktail parties (but rather than embarrass them, we shall
just call them “cocktail-party philosophers”), will say, “That all is
relative is a consequence of Einstein, and it has profound influences
on our ideas.” In addition, they say “It has been demonstrated in
physics that phenomena depend upon your frame of reference.” We
hear that a great deal, but it is difficult to find out what it means.
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Probably the frames of reference that were originally referred to
were the coordinate systems which we use in the analysis of the
theory of relativity. So the fact that “things depend upon your frame
of reference” is supposed to have had a profound effect on modern
thought. One might well wonder why, because, after all, that things
depend upon one’s point of view is so simple an idea that it cer-
tainly cannot have been necessary to go to all the trouble of the
physical relativity theory in order to discover it. That what one sees
depends upon his frame of reference is certainly known to anybody
who walks around, because he sees an approaching pedestrian first
from the front and then from the back; there is nothing deeper in
most of the philosophy which is said to have come from the theory
of relativity than the remark that “a person looks different from the
front than from the back.” The old story about the elephant that
several blind men describe in different ways is another example, per-
haps, of the theory of relativity from the philosopher’s point of view.

But certainly there must be deeper things in the theory of rela-
tivity than just this simple remark that “a person looks different
from the front than from the back.” Of course relativity is deeper
than this, because we can make definite predictions with it. It cer-
tainly would be rather remarkable if we could predict the behavior
of nature from such a simple observation alone.

There is another school of philosophers who feel very uncom-
fortable about the theory of relativity, which asserts that we cannot
determine our absolute velocity without looking at something out-
side, and who would say, “It is obvious that one cannot measure
his velocity without looking outside. It is self-evident that it is
meaningless to talk about the velocity of a thing without looking
outside; the physicists are rather stupid for having thought other-
wise, but it has just dawned on them that this is the case. If only
we philosophers had realized what the problems were that the
physicists had, we could have decided immediately by brainwork
that it is impossible to tell how fast one is moving without looking
outside, and we could have made an enormous contribution to
physics.” These philosophers are always with us, struggling in the
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periphery to try to tell us something, but they never really under-
stand the subtleties and depths of the problem.

Our inability to detect absolute motion is a result of experiment
and not a result of plain thought, as we can easily illustrate. In the
first place, Newton believed that it was true that one could not tell
how fast he is going if he is moving with uniform velocity in a
straight line. In fact, Newton first stated the principle of relativity,
and one quotation made in the last chapter was a statement of
Newton’s. Why then did the philosophers not make all this fuss
about “all is relative,” or whatever, in Newton’s time? Because it was
not until Maxwell’s theory of electrodynamics was developed that
there were physical laws that suggested that one could measure his
velocity without looking outside; soon it was found experimentally
that one could not.

Now, is it absolutely, definitely, philosophically necessary that one
should not be able to tell how fast he is moving without looking
outside? One of the consequences of relativity was the development
of a philosophy which said, “You can only define what you can
measure! Since it is self-evident that one cannot measure a velocity
without seeing what he is measuring it relative to, therefore it is clear
that there is no meaning to absolute velocity. The physicists should
have realized that they can talk only about what they can measure.”
But that is the whole problem: whether or not one can define absolute
velocity is the same as the problem of whether or not one can detect
in an experiment, without looking outside, whether he is moving.
In other words, whether or not a thing is measurable is not some-
thing to be decided a priori by thought alone, but something that
can be decided only by experiment. Given the fact that the velocity
of light is 186,000 mi/sec, one will find few philosophers who will
calmly state that it is self-evident that if light goes 186,000 mi/sec
inside a car, and the car is going 100,000 mi/sec, that the light also
goes 186,000 mi/sec past an observer on the ground. That is a
shocking fact to them; the very ones who claim it is obvious find,
when you give them a specific fact, that it is not obvious.

Finally, there is even a philosophy which says that one cannot
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detect any motion except by looking outside. It is simply not true
in physics. True, one cannot perceive a uniform motion in a straight
line, but if the whole room were rotating we would certainly know
it, for everybody would be thrown to the wall—there would be all
kinds of “centrifugal” effects. That the earth is turning on its axis
can be determined without looking at the stars, by means of the
so-called Foucault pendulum, for example. Therefore it is not true
that “all is relative”; it is only uniform velocity that cannot be de-
tected without looking outside. Uniform rotation about a fixed axis
can be. When this is told to a philosopher, he is very upset that he
did not really understand it, because to him it seems impossible
that one should be able to determine rotation about an axis without
looking outside. If the philosopher is good enough, after some time
he may come back and say, “I understand. We really do not have
such a thing as absolute rotation; we are really rotating relative to
the stars, you see. And so some influence exerted by the stars on the
object must cause the centrifugal force.”

Now, for all we know, that is true; we have no way, at the present
time, of telling whether there would have been centrifugal force if
there were no stars and nebulae around. We have not been able to
do the experiment of removing all the nebulae and then measuring
our rotation, so we simply do not know. We must admit that the
philosopher may be right. He comes back, therefore, in delight and
says, “It is absolutely necessary that the world ultimately turn out
to be this way: absolute rotation means nothing; it is only relative
to the nebulae.” Then we say to him, “Now, my friend, is it or is it
not obvious that uniform velocity in a straight line, relative to the
nebulae, should produce no effects inside a car?” Now that the mo-
tion is no longer absolute, but is a motion relative to the nebulae, it
becomes a mysterious question, and a question that can be an-
swered only by experiment.

What, then, are the philosophic influences of the theory of rel-
ativity? If we limit ourselves to influences in the sense of what kind
of new ideas and suggestions are made to the physicist by the princi-
ple of relativity, we could describe some of them as follows. The
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first discovery is, essentially, that even those ideas which have been
held for a very long time and which have been very accurately ver-
ified might be wrong. It was a shocking discovery, of course, that
Newton’s laws are wrong, after all the years in which they seemed
to be accurate. Of course it is clear, not that the experiments were
wrong, but that they were done over only a limited range of veloc-
ities, so small that the relativistic effects would not have been evi-
dent. But nevertheless, we now have a much more humble point
of view of our physical laws—everything can be wrong!

Secondly, if we have a set of “strange” ideas, such as that time
goes slower when one moves, and so forth, whether we like them
or do not like them is an irrelevant question. The only relevant
question is whether the ideas are consistent with what is found ex-
perimentally. In other words, the “strange ideas” need only agree
with experiment, and the only reason that we have to discuss the
behavior of clocks and so forth is to demonstrate that although the
notion of the time dilation is strange, it is consistent with the way
we measure time.

Finally, there is a third suggestion which is a little more technical
but which has turned out to be of enormous utility in our study of
other physical laws, and that is to look at the symmetry of the laws or,
more specifically, to look for the ways in which the laws can be trans-
formed and leave their form the same. When we discussed the theory
of vectors, we noted that the fundamental laws of motion are not
changed when we rotate the coordinate system, and now we learn
that they are not changed when we change the space and time vari-
ables in a particular way, given by the Lorentz transformation. So
this idea of studying the patterns or operations under which the fun-
damental laws are not changed has proved to be a very useful one.

4-2 The twin paradox
To continue our discussion of the Lorentz transformation and rel-
ativistic effects, we consider a famous so-called paradox of Peter
and Paul, who are supposed to be twins, born at the same time.
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When they are old enough to drive a spaceship, Paul flies away at
very high speed. Because Peter, who is left on the ground, sees Paul
going so fast, all of Paul’s clocks appear to go slower, his heartbeats
go slower, his thoughts go slower, everything goes slower, from
Peter’s point of view. Of course, Paul notices nothing unusual, but
if he travels around and about for a while and then comes back, he
will be younger than Peter, the man on the ground! That is actually
right; it is one of the consequences of the theory of relativity which
has been clearly demonstrated. Just as the mu-mesons last longer
when they are moving, so also will Paul last longer when he is mov-
ing. This is called a “paradox” only by the people who believe that
the principle of relativity means that all motion is relative; they say,
“Heh, heh, heh, from the point of view of Paul, can’t we say that
Peter was moving and should therefore appear to age more slowly?
By symmetry, the only possible result is that both should be the
same age when they meet.” But in order for them to come back to-
gether and make the comparison, Paul must either stop at the end
of the trip and make a comparison of clocks or, more simply, he
has to come back, and the one who comes back must be the man
who was moving, and he knows this, because he had to turn
around. When he turned around, all kinds of unusual things hap-
pened in his spaceship—the rockets went off, things jammed up
against one wall, and so on—while Peter felt nothing.

So the way to state the rule is to say that the man who has felt the
accelerations, who has seen things fall against the walls, and so on,
is the one who would be the younger; that is the difference between
them in an “absolute” sense, and it is certainly correct. When we
discussed the fact that moving mu-mesons live longer, we used as
an example their straight-line motion in the atmosphere. But we
can also make mu-mesons in a laboratory and cause them to go in
a curve with a magnet, and even under this accelerated motion,
they last exactly as much longer as they do when they are moving
in a straight line. Although no one has arranged an experiment ex-
plicitly so that we can get rid of the paradox, one could compare a
mu-meson which is left standing with one that had gone around a
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complete circle, and it would surely be found that the one that went
around the circle lasted longer. Although we have not actually car-
ried out an experiment using a complete circle, it is really not nec-
essary, of course, because everything fits together all right. This may
not satisfy those who insist that every single fact be demonstrated
directly, but we confidently predict the result of the experiment in
which Paul goes in a complete circle.

4-3 Transformation of velocities
The main difference between the relativity of Einstein and the rel-
ativity of Newton is that the laws of transformation connecting the
coordinates and times between relatively moving systems are dif-
ferent. The correct transformation law, that of Lorentz, is

(4.1)

These equations correspond to the relatively simple case in which
the relative motion of the two observers is along their common x-
axes. Of course other directions of motion are possible, but the most
general Lorentz transformation is rather complicated, with all four
quantities mixed up together. We shall continue to use this simpler
form, since it contains all the essential features of relativity.

Let us now discuss more of the consequences of this transfor-
mation. First, it is interesting to solve these equations in reverse.
That is, here is a set of linear equations, four equations with four
unknowns, and they can be solved in reverse, for x, y, z, t in terms
of x', y', z', t'. The result is very interesting, since it tells us how a
system of coordinates “at rest” looks from the point of view of one
that is “moving.” Of course, since the motions are relative and of
uniform velocity, the man who is “moving” can say, if he wishes,
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that it is really the other fellow who is moving and he himself who
is at rest. And since he is moving in the opposite direction, he
should get the same transformation, but with the opposite sign of
velocity. That is precisely what we find by manipulation, so that is
consistent. If it did not come out that way, we would have real cause
to worry!

(4.2)

Next we discuss the interesting problem of the addition of veloc-
ities in relativity. We recall that one of the original puzzles was that
light travels at 186,000 mi/sec in all systems, even when they are in
relative motion. This is a special case of the more general problem
exemplified by the following. Suppose that an object inside a space-
ship is going at 100,000 mi/sec and the spaceship itself is going at
100,000 mi/sec; how fast is the object inside the spaceship moving
from the point of view of an observer outside? We might want to
say 200,000 mi/sec, which is faster than the speed of light. This is
very unnerving, because it is not supposed to be going faster than
the speed of light! The general problem is as follows.

Let us suppose that the object inside the ship, from the point of
view of the man inside, is moving with velocity v, and that the
spaceship itself has a velocity u with respect to the ground. We want
to know with what velocity vx this object is moving from the point
of view of the man on the ground. This is, of course, still but a spe-
cial case in which the motion is in the x-direction. There will also
be a transformation for velocities in the y-direction, or for any
angle; these can be worked out as needed. Inside the spaceship the
velocity is vx', which means that the displacement x' is equal to the
velocity times the time:

x' = vx't'. (4.3)
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Now we have only to calculate what the position and time are from
the point of view of the outside observer for an object which has
the relation (4.2) between x' and t'. So we simply substitute (4.3)
into (4.2), and obtain

. (4.4)

But here we find x expressed in terms of t'. In order to get the ve-
locity as seen by the man on the outside, we must divide his distance
by his time, not by the other man’s time ! So we must also calculate
the time as seen from the outside, which is

(4.5)

Now we must find the ratio of x to t, which is 

, (4.6)

the square roots having cancelled. This is the law that we seek: the
resultant velocity, the “summing” of two velocities, is not just the
algebraic sum of two velocities (we know that it cannot be or we
get in trouble), but is “corrected” by 1 + uv/c2.

Now let us see what happens. Suppose that you are moving in-
side the spaceship at half the speed of light, and that the spaceship
itself is going at half the speed of light. Thus u is and v is ,
but in the denominator uv is one-fourth, so that

.

So, in relativity, “half ” and “half ” does not make “one,” it makes
only “4/5.” Of course low velocities can be added quite easily in the
familiar way, because so long as the velocities are small compared
with the speed of light we can forget about the (1 + uv/c2) factor;
but things are quite different and quite interesting at high velocity.

Let us take a limiting case. Just for fun, suppose that inside the
spaceship the man was observing light itself. In other words, v = c,
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and yet the spaceship is moving. How will it look to the man on
the ground? The answer will be

Therefore, if something is moving at the speed of light inside the
ship, it will appear to be moving at the speed of light from the point
of view of the man on the ground too! This is good, for it is, in
fact, what the Einstein theory of relativity was designed to do in
the first place—so it had better work!

Of course, there are cases in which the motion is not in the di-
rection of the uniform translation. For example, there may be an
object inside the ship which is just moving “upward” with the ve-
locity vy' with respect to the ship, and the ship is moving “horizon-
tally.” Now, we simply go through the same thing, only using y’s
instead of x’s, with the result

so that if vx' = 0,

. (4.7)

Thus a sidewise velocity is no longer vy' , but . We
found this result by substituting and combining the transforma-
tion equations, but we can also see the result directly from the prin-
ciple of relativity for the following reason (it is always good to look
again to see whether we can see the reason). We have already (Figure
3-3) seen how a possible clock might work when it is moving;
the light appears to travel at an angle at the speed c in the fixed
system, while it simply goes vertically with the same speed in the
moving system. We found that the vertical component of the ve-
locity in the fixed system is less than that of light by the factor

(see Eq. 3-3). But now suppose that we let a material
particle go back and forth in this same “clock,” but at some integral
fraction 1/n of the speed of light (Figure 4-1). Then when the par-
ticle has gone back and forth once, the light will have gone exactly
n times. That is, each “click” of the “particle” clock will coincide
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with each nth “click” of the light clock. This fact must still be true
when the whole system is moving, because the physical phenomenon
of coincidence will be a coincidence in any frame. Therefore, since
the speed сy is less than the speed of light, the speed vy of the par-
ticle must be slower than the corresponding speed by the same
square-root ratio! That is why the square root appears in any ver-
tical velocity.

4-4 Relativistic mass
We learned in the last chapter that the mass of an object increases
with velocity, but no demonstration of this was given, in the sense
that we made no arguments analogous to those about the way clocks
have to behave. However, we can show that, as a consequence of rel-
ativity plus a few other reasonable assumptions, the mass must vary
in this way. (We have to say “a few other assumptions” because we
cannot prove anything unless we have some laws which we assume
to be true, if we expect to make meaningful deductions.) To avoid
the need to study the transformation laws of force, we shall analyze
a collision, where we need know nothing about the laws of force, ex-
cept that we shall assume the conservation of momentum and en-
ergy. Also, we shall assume that the momentum of a particle which
is moving is a vector and is always directed in the direction of the
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Figure 4-1 Trajectories described by a light ray and particle inside a
moving clock.
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velocity. However, we shall not assume that the momentum is a
constant times the velocity, as Newton did, but only that it is some
function of velocity. We thus write the momentum vector as a cer-
tain coefficient times the vector velocity:

p = mvv. (4.8)

We put a subscript v on the coefficient to remind us that it is a
function of velocity, and we shall agree to call this coefficient mv

the “mass.” Of course, when the velocity is small, it is the same
mass that we would measure in the slow-moving experiments that
we are used to. Now we shall try to demonstrate that the formula
for mv must be , by arguing from the principle of
relativity that the laws of physics must be the same in every coor-
dinate system.

Suppose that we have two particles, like two protons, that are
absolutely equal, and they are moving toward each other with ex-
actly equal velocities. Their total momentum is zero. Now what
can happen? After the collision, their directions of motion must be
exactly opposite to each other, because if they are not exactly op-
posite, there will be a nonzero total vector momentum, and mo-
mentum would not have been conserved. Also they must have the
same speeds, since they are exactly similar objects; in fact, they must
have the same speed they started with, since we suppose that the
energy is conserved in these collisions. So the diagram of an elastic
collision, a reversible collision, will look like Figure 4-2(a): all the
arrows are the same length, all the speeds are equal. We shall sup-
pose that such collisions can always be arranged, that any angle i
can occur, and that any speed could be used in such a collision.
Next, we notice that this same collision can be viewed differently
by turning the axes, and just for convenience we shall turn the axes,
so that the horizontal splits it evenly, as in Figure 4-2(b). It is the
same collision redrawn, only with the axes turned.

Now here is the real trick: let us look at this collision from the point
of view of someone riding along in a car that is moving with a speed
equal to the horizontal component of the velocity of one particle.

/ /m v c10
2 2-
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Then how does the collision look? It looks as though particle 1 is
just going straight up, because it has lost its horizontal component,
and it comes straight down again, also because it does not have that
component. That is, the collision appears as shown in Figure 4-3(a).
Particle 2, however, was going the other way, and as we ride past it
appears to fly by at some terrific speed and at a smaller angle, but
we can appreciate that the angles before and after the collision are
the same. Let us denote by u the horizontal component of the ve-
locity of particle 2, and by w the vertical velocity of particle 1.

Now the question is, what is the vertical velocity u tan α? If we
knew that, we could get the correct expression for the momentum,
using the law of conservation of momentum in the vertical direc-
tion. Clearly, the horizontal component of the momentum is con-
served: it is the same before and after the collision for both particles,
and is zero for particle 1. So we need use the conservation law only
for the upward velocity u tan α. But we can get the upward velocity,
simply by looking at the same collision going the other way! If we
look at the collision of Figure 4-3(a) from a car moving to the left
with speed u, we see the same collision, except “turned over,” as
shown in Figure 4-3(b). Now particle 2 is the one that goes up and
down with speed w, and particle 1 has picked up the horizontal
speed u. Of course, now we know what the velocity u tan α is: it is

(see Eq. 4.7). We know that the change in the ver-
tical momentum of the vertically moving particle is 

Δp = 2mww

/w u c1 2 2-
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Figure 4-2 Two views of an elastic collision between equal objects
moving at the same speed in opposite directions.
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(2, because it moves up and back down). The obliquely moving par-
ticle has a certain velocity v whose components we have found to be
u and , and whose mass is mv. The change in vertical
momentum of this particle is therefore Δp' = 2mv be-
cause, in accordance with our assumed law (4.8), the momentum
component is always the mass corresponding to the magnitude of
the velocity times the component of the velocity in the direction
of interest. Thus in order for the total momentum to be zero the
vertical momenta must cancel and the ratio of the mass moving
with speed v and the mass moving with speed w must therefore be

(4.9)

Let us take the limiting case that w is infinitesimal. If w is very
tiny indeed, it is clear that v and u are practically equal. In this case,
mw → m0 and mv → mu. The grand result is

. (4.10) 

It is an interesting exercise now to check whether or not Eq. (4.9)
is indeed true for arbitrary values of w, assuming that Eq. (4.10) is
the right formula for the mass. Note that the velocity v needed in
Eq. (4.9) can be calculated from the right-angle triangle:

v2 = u2 + w2 (1 – u2/c2).
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Figure 4-3 Two more views of the collision, from moving cars. 
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It will be found to check out automatically, although we used it
only in the limit of small w.

Now, let us accept that momentum is conserved and that the mass
depends upon the velocity according to (4.10) and go on to find what
else we can conclude. Let us consider what is commonly called an in-
elastic collision. For simplicity, we shall suppose that two objects of the
same kind, moving oppositely with equal speeds w, hit each other and
stick together, to become some new, stationary object, as shown in
Figure 4-4(a). The mass m of each corresponds to w, which, as we
know, is . If we assume the conservation of momen-
tum and the principle of relativity, we can demonstrate an interesting
fact about the mass of the new object which has been formed. We
imagine an infinitesimal velocity u at right angles to w (we can do the
same with finite values of u, but it is easier to understand with an in-
finitesimal velocity), then look at this same collision as we ride by in
an elevator at the velocity –u. What we see is shown in Figure 4-4(b).
The composite object has an unknown mass M. Now object 1 moves
with an upward component of velocity u and a horizontal component
which is practically equal to w, and so also does object 2. After the
collision we have the mass M moving upward with velocity u, con-
sidered very small compared with the speed of light, and also small
compared with w. Momentum must be conserved, so let us estimate
the momentum in the upward direction before and after the collision.
Before the collision we have p ≈ 2mwu, and after the collision the mo-
mentum is evidently p' = Muu, but Mu is essentially the same as M0

because u is so small. These momenta must be equal because of the
conservation of momentum, and therefore

M0 = 2mw. (4.11)
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Figure 4-4 Two views of an inelastic collision between equally massive
objects.

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 87



The mass of the object which is formed when two equal objects collide
must be twice the mass of the objects which come together. You might
say, “Yes, of course, that is the conservation of mass.” But not “Yes,
of course,” so easily, because these masses have been enhanced over
the masses that they would be if they were standing still, yet they
still contribute, to the total M, not the mass they have when stand-
ing still, but more. Astonishing as that may seem, in order for the
conservation of momentum to work when two objects come to-
gether, the mass that they form must be greater than the rest
masses of the objects, even though the objects are at rest after the
collision!

4-5 Relativistic energy
In the last chapter we demonstrated that as a result of the depen-
dence of the mass on velocity and Newton’s laws, the changes in
the kinetic energy of an object resulting from the total work done
by the forces on it always comes out to be

. (4.12)

We even went further, and guessed that the total energy is the total
mass times c2. Now we continue this discussion.

Suppose that our two equally massive objects that collide can
still be “seen” inside M. For instance, a proton and a neutron are
“stuck together,” but are still moving about inside of M. Then, al-
though we might at first expect the mass M to be 2m0, we have
found that it is not 2m0, but 2mw. Since 2mw is what is put in, but
2m0 are the rest masses of the things inside, the excess mass of the
composite object is equal to the kinetic energy brought in. This
means, of course, that energy has inertia. In the last chapter we dis-
cussed the heating of a gas, and showed that because the gas mol-
ecules are moving and moving things are heavier, when we put
energy into the gas its molecules move faster and so the gas gets
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heavier. But in fact the argument is completely general, and our
discussion of the inelastic collision shows that the mass is there
whether or not it is kinetic energy. In other words, if two particles
come together and produce potential or any other form of energy;
if the pieces are slowed down by climbing hills, doing work against
internal forces, or whatever; then it is still true that the mass is the
total energy that has been put in. So we see that the conservation
of mass which we have deduced above is equivalent to the conser-
vation of energy, and therefore there is no place in the theory of
relativity for strictly inelastic collisions, as there was in Newtonian
mechanics. According to Newtonian mechanics it is all right for
two things to collide and so form an object of mass 2m0 which is
in no way distinct from the one that would result from putting
them together slowly. Of course we know from the law of conser-
vation of energy that there is more kinetic energy inside, but that
does not affect the mass, according to Newton’s laws. But now we
see that this is impossible; because of the kinetic energy involved
in the collision, the resulting object will be heavier; therefore, it
will be a different object. When we put the objects together gently
they make something whose mass is 2m0; when we put them to-
gether forcefully, they make something whose mass is greater. When
the mass is different, we can tell that it is different. So, necessarily,
the conservation of energy must go along with the conservation of
momentum in the theory of relativity.

This has interesting consequences. For example, suppose that
we have an object whose mass M is measured, and suppose some-
thing happens so that it flies into two equal pieces moving with
speed w, so that they each have a mass mw. Now suppose that these
pieces encounter enough material to slow them up until they stop;
then they will have mass m0. How much energy will they have given
to the material when they have stopped? Each will give an amount
(mw – m0)c2, by the theorem that we proved before. This much en-
ergy is left in the material in some form, as heat, potential energy, or
whatever. Now 2mw = M, so the liberated energy is E = (M – 2m0)c2.
This equation was used to estimate how much energy would be
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liberated under fission in the atomic bomb, for example. (Although
the fragments are not exactly equal, they are nearly equal.) The mass
of the uranium atom was known—it had been measured ahead of
time—and the atoms into which it split, iodine, xenon, and so on,
all were of known mass. By masses, we do not mean the masses
while the atoms are moving, we mean the masses when the atoms
are at rest. In other words, both M and m0 are known. So by sub-
tracting the two numbers one can calculate how much energy will
be released if M can be made to split in “half.” For this reason poor
old Einstein was called the “father” of the atomic bomb in all the
newspapers. Of course, all that meant was that he could tell us
ahead of time how much energy would be released if we told him
what process would occur. The energy that should be liberated
when an atom of uranium undergoes fission was estimated about
six months before the first direct test, and as soon as the energy was
in fact liberated, someone measured it directly (and if Einstein’s
formula had not worked, they would have measured it anyway),
and the moment they measured it they no longer needed the for-
mula. Of course, we should not belittle Einstein, but rather should
criticize the newspapers and many popular descriptions of what
causes what in the history of physics and technology. The problem
of how to get the thing to occur in an effective and rapid manner
is a completely different matter.

The result is just as significant in chemistry. For instance, if we
were to weigh the carbon dioxide molecule and compare its mass
with that of the carbon and the oxygen, we could find out how
much energy would be liberated when carbon and oxygen form
carbon dioxide. The only trouble here is that the differences in
masses are so small that it is technically very difficult to do.

Now let us turn to the question of whether we should add m0c2

to the kinetic energy and say from now on that the total energy of
an object is mc2. First, if we can still see the component pieces of
rest mass m0 inside M, then we could say that some of the mass M
of the compound object is the mechanical rest mass of the parts,
part of it is kinetic energy of the parts, and part of it is potential
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energy of the parts. But we have discovered, in nature, particles of
various kinds which undergo reactions just like the one we have
treated above, in which with all the study in the world, we cannot
see the parts inside. For instance, when a K-meson disintegrates into
two pions it does so according to the law (4.11), but the idea that
a K is made out of 2 π’s is a useless idea, because it also disintegrates
into 3 π’s!

Therefore we have a new idea: we do not have to know what
things are made of inside; we cannot and need not identify, inside
a particle, which of the energy is rest energy of the parts into which
it is going to disintegrate. It is not convenient and often not possi-
ble to separate the total mc2 energy of an object into rest energy of
the inside pieces, kinetic energy of the pieces, and potential energy
of the pieces; instead, we simply speak of the total energy of the par-
ticle. We “shift the origin” of energy by adding a constant m0c2 to
everything, and say that the total energy of a particle is the mass in
motion times c2, and when the object is standing still, the energy
is the mass at rest times c2.

Finally, we find that the velocity v, momentum P, and total en-
ergy E are related in a rather simple way. That the mass in motion
at speed v is the mass m0 at rest divided by , surprisingly
enough, is rarely used. Instead, the following relations are easily
proved, and turn out to be very useful:

E 2 – P 2c2 = c4 (4.13)

and

Pc = Ev/c. (4.14)

m0
2

/v c1 2 2-
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S PA C E - T I M E

5-1 The geometry of space-time
The theory of relativity shows us that the relationships of po-
sitions and times as measured in one coordinate system and an-

other are not what we would have expected on the basis of our
intuitive ideas. It is very important that we thoroughly understand
the relations of space and time implied by the Lorentz transforma-
tion, and therefore we shall consider this matter more deeply in
this chapter.

The Lorentz transformation between the positions and times (x,
y, z, t) as measured by an observer “standing still,” and the corre-
sponding coordinates and time (x', y', z', t' ) measured inside a
“moving” spaceship, moving with velocity u are

(5.1)

Let us compare these equations with Eq. (1.5), which also relates
measurements in two systems, one of which in this instance is ro-
tated relative to the other:
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(5.2)

In this particular case, Moe and Joe are measuring with axes having
an angle i between the x'- and x-axes. In each case, we note that
the “primed” quantities are “mixtures” of the “unprimed” ones: the
new x' is a mixture of x and y, and the new y' is also a mixture of x
and y.

An analogy is useful: When we look at an object, there is an ob-
vious thing we might call the “apparent width,” and another we
might call the “depth.” But the two ideas, width and depth, are not
fundamental properties of the object, because if we step aside and
look at the same thing from a different angle, we get a different
width and a different depth, and we may develop some formulas
for computing the new ones from the old ones and the angles in-
volved. Equations (5.2) are these formulas. One might say that a
given depth is a kind of “mixture” of all depth and all width. If it
were impossible ever to move, and we always saw a given object from
the same position, then this whole business would be irrelevant—
we would always see the “true” width and the “true” depth, and
they would appear to have quite different qualities, because one ap-
pears as a subtended optical angle and the other involves some fo-
cusing of the eyes or even intuition; they would seem to be very
different things and would never get mixed up. It is because we can
walk around that we realize that depth and width are, somehow or
other, just two different aspects of the same thing.

Can we not look at the Lorentz transformations in the same way?
Here also we have a mixture—of positions and the time. A differ-
ence between a space measurement and a time measurement pro-
duces a new space measurement. In other words, in the space
measurements of one man there is mixed in a little bit of the time,
as seen by the other. Our analogy permits us to generate this idea:
the “reality” of an object that we are looking at is somehow greater
(speaking crudely and intuitively) than its “width” and its “depth”
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because they depend upon how we look at it; when we move to a
new position, our brain immediately recalculates the width and the
depth. But our brain does not immediately recalculate coordinates
and time when we move at high speed, because we have had no ef-
fective experience of going nearly as fast as light to appreciate the
fact that time and space are also of the same nature. It is as though
we were always stuck in the position of having to look at just the
width of something, not being able to move our heads appreciably
one way or the other; if we could, we understand now, we would
see some of the other man’s time—we would see “behind,” so to
speak, a little bit.

Thus we shall try to think of objects in a new kind of world, of
space and time mixed together, in the same sense that the objects
in our ordinary space-world are real, and can be looked at from dif-
ferent directions. We shall then consider that objects occupying
space and lasting for a certain length of time occupy a kind of
“blob” in a new kind of world, and that we look at this “blob” from
different points of view when we are moving at different velocities.
This new world, this geometrical entity in which the “blobs” exist
by occupying position and taking up a certain amount of time, is
called space-time. A given point (x, y, z, t) in space-time is called an
event. Imagine, for example, that we plot the x-positions horizon-
tally, y and z in two other directions, both mutually at “right angles”
and at “right angles” to the paper (!), and time, vertically. Now, how
does a moving particle, say, look on such a diagram? If the particle
is standing still, then it has a certain x, and as time goes on, it has
the same x, the same x, the same x; so its “path” is a line that runs
parallel to the t-axis (Figure 5-1[a]). On the other hand, if it drifts
outward, then as the time goes on x increases (Figure 5-1[b]). So a
particle, for example, which starts to drift out and then slows up
should have a motion something like that shown in Figure 5-1(c).
A particle, in other words, which is permanent and does not disin-
tegrate is represented by a line in space-time. A particle which dis-
integrates would be represented by a forked line, because it would
turn into two other things which would start from that point.
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What about light? Light travels at the speed c, and that would be
represented by a line having a certain fixed slope (Figure 5-1[d]).

Now according to our new idea, if a given event occurs to a
particle, say if it suddenly disintegrates at a certain space-time
point into two new ones which follow some new tracks, and this
interesting event occurred at a certain value of x and a certain
value of t, then we would expect that, if this makes any sense, we
just have to take a new pair of axes and turn them, and that will
give us the new t and the new x in our new system, as shown in
Figure 5-2(a). But this is wrong, because Eq. (5.1) is not exactly
the same mathematical transformation as Eq. (5.2). Note, for ex-
ample, the difference in sign between the two, and the fact that
one is written in terms of cos i and sin i, while the other is written
with algebraic quantities. (Of course, it is not impossible that the
algebraic quantities could be written as cosine and sine, but actu-
ally they cannot.) But still, the two expressions are very similar.
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Figure 5-1 Three particle paths in space-time: (a) a particle at rest at
x = x0; (b) a particle which starts as x = x0 and moves with
constant speed; (c) a particle which starts at high speed but
slows down.

Figure 5-2 Two views of a disintegrating particle.
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As we shall see, it is not really possible to think of space-time as
a real, ordinary geometry because of that difference in sign. In
fact, although we shall not emphasize this point, it turns out that
a man who is moving has to use a set of axes which are inclined
equally to the light ray, using a special kind of projection parallel
to the x'- and t'-axes, for his x' and t', as shown in Figure 5-2(b).
We shall not deal with the geometry, since it does not help much;
it is easier to work with the equations.

5-2 Space-time intervals
Although the geometry of space-time is not Euclidean in the ordi-
nary sense, there is a geometry which is very similar, but peculiar
in certain respects. If this idea of geometry is right, there ought to
be some functions of coordinates and time which are independent
of the coordinate system. For example, under ordinary rotations,
if we take two points, one at the origin, for simplicity, and the other
one somewhere else, both systems would have the same origin, and
the distance from here to the other point is the same in both. That
is one property that is independent of the particular way of mea-
suring it. The square of the distance is x2 + y2 + z2. Now what
about space-time? It is not hard to demonstrate that we have here,
also, something which stays the same, namely, the combination
c2t2 – x2 – y2 – z2 is the same before and after the transformation:

c2t' 2 – x' 2 – y' 2 – z' 2 = c2t2 – x2 – y2 – z2. (5.3)

This quantity is therefore something which, like the distance, is
“real” in some sense; it is called the interval between the two space-
time points, one of which is, in this case, at the origin. (Actually,
of course, it is the interval squared, just as x2 + y2 + z2 is the dis-
tance squared.) We give it a different name because it is in a differ-
ent geometry, but the interesting thing is only that some signs are
reversed and there is a c in it.

Let us get rid of the c; that is an absurdity if we are going to have
a wonderful space with x’s and y’s that can be interchanged. One of
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the confusions that could be caused by someone with no experience
would be to measure widths, say, by the angle subtended at the eye,
and measure depth in a different way, like the strain on the muscles
needed to focus them, so that the depths would be measured in feet
and the widths in meters. Then one would get an enormously com-
plicated mess of equations in making transformations such as (5.2),
and would not be able to see the clarity and simplicity of the thing
for a very simple technical reason, that the same thing is being mea-
sured in two different units. Now in Eqs. (5.1) and (5.3) nature is
telling us that time and space are equivalent; time becomes space;
they should be measured in the same units. What distance is a “sec-
ond”? It is easy to figure out from (5.3) what it is. It is 3 # 108 meters,
the distance that light would go in one second. In other words, if we
were to measure all distances and times in the same units, seconds,
then our unit of distance would be 3 # 108 meters, and the equa-
tions would be simpler. Or another way that we could make the
units equal is to measure time in meters. What is a meter of time?
A meter of time is the time it takes for light to go one meter, and is
therefore ⅓ # 10–8 sec, or 3.3 billionths of a second! We would like,
in other words, to put all our equations in a system of units in which
c = 1. If time and space are measured in the same units, as suggested,
then the equations are obviously much simplified. They are

(5.4)

(5.5)

If we are ever unsure or “frightened” that after we have this system
with c = 1 we shall never be able to get our equations right again,
the answer is quite the opposite. It is much easier to remember
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them without the c’s in them, and it is always easy to put the c’s
back, by looking after the dimensions. For instance, in ,
we know that we cannot subtract a velocity squared, which has
units, from the pure number 1, so we know that we must divide u2

by c2 in order to make that unitless, and that is the way it goes.
The difference between space-time and ordinary space, and the

character of an interval as related to the distance, is very interesting.
According to formula (5.5), if we consider a point which in a given
coordinate system had zero time, and only space, then the interval
squared would be negative and we would have an imaginary inter-
val, the square root of a negative number. Intervals can be either
real or imaginary in the theory. The square of an interval may be
either positive or negative, unlike distance, which has a positive
square. When an interval is imaginary, we say that the two points
have a space-like interval between them (instead of imaginary), be-
cause the interval is more like space than like time. On the other
hand, if two objects are at the same place in a given coordinate sys-
tem, but differ only in time, then the square of the time is positive
and the distances are zero and the interval squared is positive; this
is called a time-like interval. In our diagram of space-time, therefore,
we would have a representation something like this: at 45° there
are two lines (actually, in four dimensions these will be “cones,”
called light cones) and points on these lines are all at zero interval
from the origin. Where light goes from a given point is always sep-
arated from it by a zero interval, as we see from Eq. (5.5). Inciden-
tally, we have just proved that if light travels with speed c in one
system, it travels with speed c in another, for if the interval is the
same in both systems, i.e., zero in one and zero in the other, then
to state that the propagation speed of light is invariant is the same
as saying that the interval is zero.

5-3 Past, present, and future
The space-time region surrounding a given space-time point can be
separated into three regions, as shown in Figure 5-3. In one region

u1 2-
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we have space-like intervals, and in two regions, time-like intervals.
Physically, these three regions into which space-time around a
given point is divided have an interesting physical relationship to
that point: a physical object or a signal can get from a point in re-
gion 2 to the event O by moving along at a speed less than the
speed of light. Therefore events in this region can affect the point
O, can have an influence on it from the past. In fact, of course, an
object at P on the negative t-axis is precisely in the “past” with re-
spect to O; it is the same space-point as O, only earlier. What hap-
pened there then, affects O now. (Unfortunately, that is the way
life is.) Another object at Q can get to O by moving with a certain
speed less than c, so if this object were in a spaceship and moving,
it would be, again, the past of the same space-point. That is, in
another coordinate system, the axis of time might go through both
O and Q. So all points of region 2 are in the “past” of O, and any-
thing that happens in this region can affect O. Therefore region 2
is sometimes called the affective past, or affecting past; it is the
locus of all events which can affect point O in any way.

Region 3, on the other hand, is a region which we can affect
from O, we can “hit” things by shooting “bullets” out at speeds less
than c. So this is the world whose future can be affected by us, and
we may call that the affective future. Now the interesting thing
about all the rest of space-time, i.e., region 1, is that we can neither
affect it now from O, nor can it affect us now at O, because nothing
can go faster than the speed of light. Of course, what happens at R
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Figure 5-3 The space-time region surrounding a point at the origin.
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can affect us later; that is, if the sun is exploding “right now,” it
takes eight minutes before we know about it, and it cannot possibly
affect us before then.

What we mean by “right now” is a mysterious thing which we
cannot define and we cannot affect, but it can affect us later, or
we could have affected it if we had done something far enough
in the past. When we look at the star Alpha Centauri, we see it as
it was four years ago; we might wonder what it is like “now.”
“Now” means at the same time from our special coordinate sys-
tem. We can only see Alpha Centauri by the light that has come
from our past, up to four years ago, but we do not know what it
is doing “now”; it will take four years before what it is doing
“now” can affect us. Alpha Centauri “now” is an idea or concept
of our mind; it is not something that is really definable physically
at the moment, because we have to wait to observe it; we cannot
even define it right “now.” Furthermore, the “now” depends on
the coordinate system. If, for example, Alpha Centauri were mov-
ing, an observer there would not agree with us because he would
put his axes at an angle, and his “now” would be a different time.
We have already talked about the fact that simultaneity is not a
unique thing.

There are fortune-tellers, or people who tell us they can know
the future, and there are many wonderful stories about the man
who suddenly discovers that he has knowledge about the affective
future. Well, there are lots of paradoxes produced by that because
if we know something is going to happen, then we can make sure
we will avoid it by doing the right thing at the right time, and so
on. But actually there is no fortune-teller who can even tell us the
present! There is no one who can tell us what is really happening
right now, at any reasonable distance, because that is unobservable.
We might ask ourselves this question, which we leave to the student
to try to answer: Would any paradox be produced if it were sud-
denly to become possible to know things that are in the space-like
intervals of region 1?

101

Space-Time

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 101



5-4 More about four-vectors
Let us now return to our consideration of the analogy of the
Lorentz transformation and rotations of the space axes. We have
learned the utility of collecting together other quantities which have
the same transformation properties as the coordinates, to form what
we call vectors, directed lines. In the case of ordinary rotations, there
are many quantities that transform the same way as x, y, and z
under rotation: for example, the velocity has three components, an
x, y, and z component; when seen in a different coordinate system,
none of the components is the same, instead they are all trans-
formed to new values. But, somehow or other, the velocity “itself ”
has a greater reality than do any of its particular components, and
we represent it by a directed line.

We therefore ask: Is it or is it not true that there are quantities
which transform, or which are related, in a moving system and in
a nonmoving system, in the same way as x, y, z, and t ? From our
experience with vectors, we know that three of the quantities, like
x, y, z, would constitute the three components of an ordinary space-
vector, but the fourth quantity would look like an ordinary scalar
under space rotation, because it does not change so long as we do
not go into a moving coordinate system. Is it possible, then, to as-
sociate with some of our known “three-vectors” a fourth object,
that we could call the “time component,” in such a manner that
the four objects together would “rotate” the same way as position
and time in space-time? We shall now show that there is, indeed,
at least one such thing (there are many of them, in fact): the three
components of momentum, and the energy as the time component,
transform together to make what we call a “four-vector.” In demon-
strating this, since it is quite inconvenient to have to write c’s every-
where, we shall use the same trick concerning units of the energy,
the mass, and the momentum that we used in Eq. (5.4). Energy
and mass, for example, differ only by a factor c2 which is merely a
question of units, so we can say energy is the mass. Instead of hav-
ing to write the c2, we put E = m, and then, of course, if there were
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any trouble we would put in the right amounts of c so that the units
would straighten out in the last equation, but not in the interme-
diate ones.

Thus our equations for energy and momentum are

(5.6)

Also in these units, we have

E 2 – p2 = . (5.7)

For example, if we measure energy in electron volts, what does a
mass of 1 electron volt mean? It means the mass whose rest energy
is 1 electron volt, that is, m0c2 is one electron volt. For example,
the rest mass of an electron is 0.511 # 106 ev.

Now what would the momentum and energy look like in a new
coordinate system? To find out, we shall have to transform Eq.
(5.6), which we can do because we know how the velocity trans-
forms. Suppose that, as we measure it, an object has a velocity v,
but we look upon the same object from the point of view of a space-
ship which itself is moving with a velocity u, and in that system we
use a prime to designate the corresponding thing. In order to sim-
plify things at first, we shall take the case that the velocity v is in
the direction of u. (Later, we can do the more general case.) What
is v', the velocity as seen from the spaceship? It is the composite ve-
locity, the “difference” between v and u. By the law which we
worked out before,

. (5.8)

Now let us calculate the new energy E', the energy as the fellow in
the spaceship would see it. He would use the same rest mass, of
course, but he would use v' for the velocity. What we have to do is
square v', subtract it from one, take the square root, and take the
reciprocal:
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Therefore

(5.9)

The energy E' is then simply m0 times the above expression. But
we want to express the energy in terms of the unprimed energy and
momentum, and we note that 

or

(5.10)

which we recognize as being exactly of the same form as

Next we must find the new momentum p'x. This is just the energy
E' times v', and is also simply expressed in terms of E and p: 

Thus

, (5.11)
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which we recognize as being of precisely the same form as

.

Thus the transformations for the new energy and momentum
in terms of the old energy and momentum are exactly the same as
the transformations for t' in terms of t and x, and x' in terms of x
and t : all we have to do is, every time we see t in (5.4) substitute E,
and every time we see x substitute px, and then the equations (5.4)
will become the same as Eqs. (5.10) and (5.11). This would imply,
if everything works right, an additional rule that p'y = py and that
p'z = pz. To prove this would require our going back and studying
the case of motion up and down. Actually, we did study the case of
motion up and down in the last chapter. We analyzed a complicated
collision and we noticed that, in fact, the transverse momentum is
not changed when viewed from a moving system; so we have already
verified that p'y = py and p'z = pz. The complete transformation,
then, is

(5.12)

In these transformations, therefore, we have discovered four
quantities which transform like x, y, z, and t, and which we call the
four-vector momentum. Since the momentum is a four-vector, it can
be represented on a space-time diagram of a moving particle as an
“arrow” tangent to the path, as shown in Figure 5-4. This arrow
has a time component equal to the energy, and its space compo-
nents represent its three-vector momentum; this arrow is more
“real” than either the energy or the momentum, because those just
depend on how we look at the diagram.
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5-5 Four-vector algebra
The notation for four-vectors is different than it is for three-vectors.
In the case of three-vectors, if we were to talk about the ordinary
three-vector momentum we would write it p. If we wanted to be
more specific, we could say it has three components which are, for
the axes in question, px, py, and pz, or we could simply refer to a
general component as pi, and say that i could either be x, y, or z,
and that these are the three components; that is, imagine that i is
any one of three directions, x, y, or z. The notation that we use for
four-vectors is analogous to this: we write pμ for the four-vector,
and μ stands for the four possible directions t, x, y, or z.

We could, of course, use any notation we want; do not laugh at
notations; invent them, they are powerful. In fact, mathematics is,
to a large extent, invention of better notations. The whole idea of
a four-vector, in fact, is an improvement in notation so that the
transformations can be remembered easily. Aμ, then, is a general
four-vector, but for the special case of momentum, the pt is identi-
fied as the energy, px is the momentum in the x-direction, py is that
in the y-direction, and pz is that in the z-direction. To add four-
vectors, we add the corresponding components.

If there is an equation among four-vectors, then the equation is
true for each component. For instance, if the law of conservation of
three-vector momentum is to be true in particle collisions, i.e., if
the sum of the momenta for a large number of interacting or col-
liding particles is to be a constant, that must mean that the sums
of all momenta in the x-direction, in the y-direction, and in the z-
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Figure 5-4 The four-vector momentum of a particle. 
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direction, for all the particles, must each be constant. This law alone
would be impossible in relativity because it is incomplete; it is like
talking about only two of the components of a three-vector. It is
incomplete because if we rotate the axes, we mix the various com-
ponents, so we must include all three components in our law. Thus,
in relativity, we must complete the law of conservation of momen-
tum by extending it to include the time component. This is ab-
solutely necessary to go with the other three, or there cannot be
relativistic invariance. The conservation of energy is the fourth equa-
tion which goes with the conservation of momentum to make a
valid four-vector relationship in the geometry of space and time.
Thus the law of conservation of energy and momentum in four-
dimensional notation is 

, (5.13)

or, in a slightly different notation 

, (5.14)

where i = 1, 2, . . . refers to the particles going into the collision;
j = 1, 2, . . . refers to the particles coming out of the collision; and
μ = x, y, z, or t. You say, “In which axes?” It makes no difference.
The law is true for each component, using any axes.

In vector analysis we discussed one other thing, the dot prod-
uct of two vectors. Let us now consider the corresponding thing
in space-time. In ordinary rotation we discovered there was an
unchanged quantity x2 + y2 + z2. In four dimensions, we find
that the corresponding quantity is t2 – x2 – y2 – z2 (Eq. 5.3). How
can we write that? One way would be to write some kind of four-
dimensional thing with a square dot between, like Aμ Bμ; one of
the notations which is actually used is

. (5.15)
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The prime on ∑ means that the first term, the “time” term, is
positive, but the other three terms have minus signs. This quantity,
then, will be the same in any coordinate system, and we may call it
the square of the length of the four-vector. For instance, what is
the square of the length of the four-vector momentum of a single
particle? This will be equal to or, in other
words, E 2 – p2, because we know that pt is E. What is E 2 – p2? It
must be something which is the same in every coordinate system.
In particular, it must be the same for a coordinate system which is
moving right along with the particle, in which the particle is stand-
ing still. If the particle is standing still, it would have no momen-
tum. So in that coordinate system, it is purely its energy, which is
the same as its rest mass. Thus E 2 – p2 = . So we see that the
square of the length of this vector, the four-vector momentum, is
equal to . 

From the square of a vector, we can go on to invent the “dot
product,” or the product which is a scalar: if aμ is one four-vector
and bμ is another four-vector, then the scalar product is 

. (5.16)

It is the same in all coordinate systems.
Finally, we shall mention certain things whose rest mass m0 is

zero. A photon of light, for example. A photon is like a particle, in
that it carries an energy and a momentum. The energy of a photon
is a certain constant, called Planck’s constant, times the frequency
of the photon: E = hn. Such a photon also carries a momentum,
and the momentum of a photon (or of any other particle, in fact)
is h divided by the wavelength: p = h/λ. But, for a photon, there is
a definite relationship between the frequency and the wavelength:
n = c/λ. (The number of waves per second, times the wavelength
of each, is the distance that the light goes in one second, which, of
course, is c.) Thus we see immediately that the energy of a photon
must be the momentum times c, or if c = 1, the energy and momen-
tum are equal. That is to say, the rest mass is zero. Let us look at

p p p pt x y z
2 2 2 2- - -

m0
2
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2
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that again; that is quite curious. If it is a particle of zero rest mass,
what happens when it stops? It never stops! It always goes at the
speed c. The usual formula for energy is . Now can
we say that m0 = 0 and v = 1, so the energy is 0? We cannot say
that it is zero; the photon really can (and does) have energy even
though it has no rest mass, but this it possesses by perpetually going
at the speed of light!

We also know that the momentum of any particle is equal to its
total energy times its velocity: if c = 1, p = vE or, in ordinary units,
p = vE/c2. For any particle moving at the speed of light, p = E if
c = 1. The formulas for the energy of a photon as seen from a mov-
ing system are, of course, given by Eq. (5.12), but for the momen-
tum we must substitute the energy times c (or times 1 in this case).
The different energies after transformation mean that there are dif-
ferent frequencies. This is called the Doppler effect, and one can
calculate it easily from Eq. (5.12), using also E = p and E = hv.

As Minkowski said, “Space of itself, and time of itself will sink
into mere shadows, and only a kind of union between them shall
survive.”

/m v10
2-
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C U R V E D  S PA C E

6-1 Curved spaces with two dimensions
According to Newton, everything attracts everything else with
a force inversely proportional to the square of the distance from

it, and objects respond to forces with accelerations proportional to
the forces. They are Newton’s laws of universal gravitation and of
motion. As you know, they account for the motions of balls, plan-
ets, satellites, galaxies, and so forth.

Einstein had a different interpretation of the law of gravitation.
According to him, space and time—which must be put together as
space-time—are curved near heavy masses. And it is the attempt of
things to go along “straight lines” in this curved space-time which
makes them move the way they do. Now that is a complex idea—
very complex. It is the idea we want to explain in this chapter.

Our subject has three parts. One involves the effects of gravita-
tion. Another involves the ideas of space-time which we already
studied. The third involves the idea of curved space-time. We will
simplify our subject in the beginning by not worrying about gravity
and by leaving out the time—discussing just curved space. We will
talk later about the other parts, but we will concentrate now on the
idea of curved space—what is meant by curved space, and, more
specifically, what is meant by curved space in this application of
Einstein. Now even that much turns out to be somewhat difficult

111

6

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 111



in three dimensions. So we will first reduce the problem still further
and talk about what is meant by the words “curved space” in two
dimensions.

In order to understand this idea of curved space in two dimen-
sions you really have to appreciate the limited point of view of the
character who lives in such a space. Suppose we imagine a bug with
no eyes who lives on a plane, as shown in Figure 6-1. He can move
only on the plane, and he has no way of knowing that there is any
way to discover any “outside world.” (He hasn’t got your imagina-
tion.) We are, of course, going to argue by analogy. We live in a
three-dimensional world, and we don’t have any imagination about
going off our three-dimensional world in a new direction; so we
have to think the thing out by analogy. It is as though we were bugs
living on a plane, and there was a space in another direction. That’s
why we will first work with the bug, remembering that he must
live on his surface and can’t get out.

As another example of a bug living in two dimensions, let’s imag-
ine one who lives on a sphere. We imagine that he can walk around
on the surface of the sphere, as in Figure 6-2, but that he can’t look
“up,” or “down,” or “out.”

Now we want to consider still a third kind of creature. He is
also a bug like the others, and also lives on a plane, as our first bug
did, but this time the plane is peculiar. The temperature is different
at different places. Also, the bug and any rulers he uses are all made
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Figure 6-1 A bug on a plane surface. 
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of the same material which expands when it is heated. Whenever
he puts a ruler somewhere to measure something the ruler ex-
pands immediately to the proper length for the temperature at that
place. Wherever he puts any object—himself, a ruler, a triangle, or
anything—the thing stretches itself because of the thermal expan-
sion. Everything is longer in the hot places than it is in the cold
places, and everything has the same coefficient of expansion. We
will call the home of our third bug a “hot plate,” although we will
particularly want to think of a special kind of hot plate that is cold
in the center and gets hotter as we go out toward the edges (Figure
6-3).

Now we are going to imagine that our bugs begin to study geom-
etry. Although we imagine that they are blind so that they can’t see
any “outside” world, they can do a lot with their legs and feelers.
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Figure 6-2 A bug on a sphere.

Figure 6-3 A bug on a hot plate.
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They can draw lines, and they can make rulers, and measure off
lengths. First, let’s suppose that they start with the simplest idea in
geometry. They learn how to make a straight line—defined as the
shortest line between two points. Our first bug—see Figure 6-4—
learns to make very good lines. But what happens to the bug on
the sphere? He draws his straight line as the shortest distance—for
him—between two points, as in Figure 6-5. It may look like a curve
to us, but he has no way of getting off the sphere and finding out
that there is “really” a shorter line. He just knows that if he tries
any other path in his world it is always longer than his straight line.
So we will let him have his straight line as the shortest arc between
two points. (It is, of course, an arc of a great circle.)

Finally, our third bug—the one in Figure 6-3—will also draw
“straight lines” that look like curves to us. For instance, the shortest
distance between A and B in Figure 6-6 would be on a curve like
the one shown. Why? Because when his line curves out toward the
warmer parts of his hot plate, the rulers get longer (from our om-
niscient point of view) and it takes fewer “yardsticks” laid end-to-
end to get from A to B. So for him the line is straight—he has no
way of knowing that there could be someone out in a strange three-
dimensional world who would call a different line “straight.”

We think you get the idea now that all the rest of the analysis
will always be from the point of view of the creatures on the par-
ticular surfaces and not from our point of view. With that in mind
let’s see what the rest of their geometries look like. Let’s assume that
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Figure 6-4 Making a “straight line” on a plane.
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the bugs have all learned how to make two lines intersect at right
angles. (You can figure out how they could do it.) Then our first
bug (the one on the normal plane) finds an interesting fact. If he
starts at the point A and makes a line 100 inches long, then makes
a right angle and marks off another 100 inches, then makes another
right angle and goes another 100 inches, then makes a third right
angle and a fourth line 100 inches long, he ends up right at the
starting point as shown in Figure 6-7(a). It is a property of his
world—one of the facts of his “geometry.”

Then he discovers another interesting thing. If he makes a trian-
gle—a figure with three straight lines—the sum of the angles is equal
to 180°, that is, to the sum of two right angles. See Figure 6-7(b).

Then he invents the circle. What’s a circle? A circle is made this
way: you rush off on straight lines in many many directions from
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Figure 6-5 Making a “straight line” on a sphere.

Figure 6-6 Making a “straight line” on the hot plate.
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a single point, and lay out a lot of dots that are all the same distance
from that point. See Figure 6-7(c). (We have to be careful how we
define these things because we’ve got to be able to make the analogs
for the other fellows.) Of course, it’s equivalent to the curve you can
make by swinging a ruler around a point. Anyway, our bug learns
how to make circles. Then one day he thinks of measuring the dis-
tance around a circle. He measures several circles and finds a neat
relationship: The distance around is always the same number times
the radius r (which is, of course, the distance from the center out to
the curve). The circumference and the radius always have the same
ratio—approximately 6.283—independent of the size of the circle.

Now let’s see what our other bugs have been finding out about
their geometries. First, what happens to the bug on the sphere when
he tries to make a “square”? If he follows the prescription we gave
above, he would probably think that the result was hardly worth
the trouble. He gets a figure like the one shown in Figure 6-8. His
end-point B isn’t on top of the starting point A. It doesn’t work out
to a closed figure at all. Get a sphere and try it. A similar thing
would happen to our friend on the hot plate. If he lays out four
straight lines of equal length—as measured with his expanding
rulers—joined by right angles he gets a picture like the one in Fig-
ure 6-9.
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Figure 6-7 A square, triangle, and circle in a flat space.
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Now suppose that our bugs had each had their own Euclid who
had told them what geometry “should” be like, and that they had
checked him out roughly by making crude measurements on a
small scale. Then as they tried to make accurate squares on a larger
scale they would discover that something was wrong. The point is,
that just by geometrical measurements they would discover that
something was the matter with their space. We define a curved space
to be a space in which the geometry is not what we expect for a
plane. The geometry of the bugs on the sphere or on the hot plate
is the geometry of a curved space. The rules of Euclidean geometry
fail. And it isn’t necessary to be able to lift yourself out of the plane
in order to find out that the world that you live in is curved. It isn’t
necessary to circumnavigate the globe in order to find out that it is
a ball. You can find out that you live on a ball by laying out a

117

Curved Space

Figure 6-8 Trying to make a “square” on a sphere.

Figure 6-9 Trying to make a “square” on the hot plate.
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square. If the square is very small you will need a lot of accuracy,
but if the square is large the measurement can be done more
crudely.

Let’s take the case of a triangle on a plane. The sum of the angles
is 180 degrees. Our friend on the sphere can find triangles that are
very peculiar. He can, for example, find triangles which have three
right angles. Yes indeed! One is shown in Figure 6-10. Suppose our
bug starts at the north pole and makes a straight line all the way
down to the equator. Then he makes a right angle and another per-
fect straight line the same length. Then he does it again. For the
very special length he has chosen he gets right back to his starting
point, and also meets the first line with a right angle. So there is no
doubt that for him this triangle has three right angles, or 270 degrees
in the sum. It turns out that for him the sum of the angles of the
triangle is always greater than 180 degrees. In fact, the excess (for
the special case shown, the extra 90 degrees) is proportional to how
much area the triangle has. If a triangle on a sphere is very small, its
angles add up to very nearly 180 degrees, only a little bit over. As
the triangle gets bigger the discrepancy goes up. The bug on the hot
plate would discover similar difficulties with his triangles.

Let’s look next at what our other bugs find out about circles.
They make circles and measure their circumferences. For example,
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Figure 6-10 On a sphere a “triangle” can have three 90° angles.
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the bug on the sphere might make a circle like the one shown in
Figure 6-11. And he would discover that the circumference is less
than 2π times the radius. (You can see that because from the wis-
dom of our three-dimensional view it is obvious that what he calls
the “radius” is a curve which is longer than the true radius of the
circle.) Suppose that the bug on the sphere had read Euclid, and
decided to predict a radius by dividing the circumference C by 2π,
taking

(6.1)

Then he would find that the measured radius was larger than the
predicted radius. Pursuing the subject, he might define the differ-
ence to be the “excess radius,” and write 

, (6.2)

and study how the excess radius effect depended on the size of the
circle.

Our bug on the hot plate would discover a similar phenomenon.
Suppose he was to draw a circle centered at the cold spot on the
plate as in Figure 6-12. If we were to watch him as he makes the
circle we would notice that his rulers are short near the center and
get longer as they are moved outward—although the bug doesn’t
know it, of course. When he measures the circumference the ruler

2
.r C

pred r
=

r r rmeas pred excess- =
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Figure 6-11 Making a circle on a sphere.
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is long all the time, so he, too, finds out that the measured radius
is longer than the predicted radius, C/2π. The effect depends on
the radius of the circle.

We will define a “curved space” as one in which these types of
geometrical errors occur: the sum of the angles of a triangle is dif-
ferent from 180 degrees; the circumference of a circle divided by
2π is not equal to the radius; the rule for making a square doesn’t
give a closed figure. You can think of others.

We have given two different examples of curved space: the sphere
and the hot plate. But it is interesting that if we choose the right
temperature variation as a function of distance on the hot plate,
the two geometries will be exactly the same. It is rather amusing.
We can make the bug on the hot plate get exactly the same answers
as the bug on the ball. For those who like geometry and geometrical
problems we’ll tell you how it can be done. If you assume that the
length of the rulers (as determined by the temperature) goes in pro-
portion to one plus some constant times the square of the distance
away from the origin, then you will find that the geometry of that
hot plate is exactly the same in all details* as the geometry of the
sphere.

There are, of course, other kinds of geometry. We could ask
about the geometry of a bug who lived on a pear, namely something
which has a sharper curvature in one place and a weaker curvature
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Figure 6-12 Making a circle on the hot plate.

* Except for the one point at infinity.
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in the other place, so that the excess in angles in triangles is more
severe when he makes little triangles in one part of his world than
when he makes them in another part. In other words, the curvature
of a space can vary from place to place. That’s just a generalization
of the idea. It can also be imitated by a suitable distribution of tem-
perature on a hot plate.

We may also point out that the results could come out with the
opposite kind of discrepancies. You could find out, for example, that
all triangles when they are made too large have the sum of their an-
gles less than 180 degrees. That may sound impossible, but it isn’t at
all. First of all, we could have a hot plate with the temperature de-
creasing with the distance from the center. Then all the effects would
be reversed. But we can also do it purely geometrically by looking
at the two-dimensional geometry of the surface of a saddle. Imagine
a saddle-shaped surface like the one sketched in Figure 6-13. Now
draw a “circle” on the surface, defined as the locus of all points the
same distance from a center. This circle is a curve that oscillates up
and down with a scallop effect. So its circumference is larger than
you would expect from calculating 2πr. So C/2π is now less than r.
The “excess radius” would be negative.

Spheres and pears and such are all surfaces of positive curvatures;
and the others are called surfaces of negative curvature. In general,
a two-dimensional world will have a curvature which varies from
place to place and may be positive in some places and negative in
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Figure 6-13 A “circle” on a saddle-shaped surface.
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other places. In general, we mean by a curved space simply one in
which the rules of Euclidean geometry break down with one sign
of discrepancy or the other. The amount of curvature—defined,
say, by the excess radius—may vary from place to place.

We might point out that, from our definition of curvature, a
cylinder is, surprisingly enough, not curved. If a bug lived on a
cylinder, as shown in Figure 6-14, he would find out that triangles,
squares, and circles would all have the same behavior they have on
a plane. This is easy to see, by just thinking about how all the fig-
ures will look if the cylinder is unrolled onto a plane. Then all the
geometrical figures can be made to correspond exactly to the way
they are in a plane. So there is no way for a bug living on a cylinder
(assuming that he doesn’t go all the way around, but just makes
local measurements) to discover that his space is curved. In our
technical sense, then, we consider that his space is not curved.
What we want to talk about is more precisely called intrinsic cur-
vature; that is, a curvature which can be found by measurements
only in a local region. (A cylinder has no intrinsic curvature.) This

Figure 6-14 A two-dimensional space with zero intrinsic curvature.
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was the sense intended by Einstein when he said that our space is
curved. But we as yet only have defined a curved space in two di-
mensions; we must go onward to see what the idea might mean in
three dimensions.

6-2 Curvature in three-dimensional space
We live in three-dimensional space and we are going to consider
the idea that three-dimensional space is curved. You say, “But how
can you imagine it being bent in any direction?” Well, we can’t
imagine space being bent in any direction because our imagination
isn’t good enough. (Perhaps it’s just as well that we can’t imagine
too much, so that we don’t get too free of the real world.) But we
can still define a curvature without getting out of our three-dimen-
sional world. All we have been talking about in two dimensions
was simply an exercise to show how we could get a definition of
curvature which didn’t require that we be able to “look in” from
the outside.

We can determine whether our world is curved or not in a way
quite analogous to the one used by the gentlemen who live on the
sphere and on the hot plate. We may not be able to distinguish be-
tween two such cases but we certainly can distinguish those cases
from the flat space, the ordinary plane. How? Easy enough: We lay
out a triangle and measure the angles. Or we make a great big circle
and measure the circumference and the radius. Or we try to lay out
some accurate squares, or try to make a cube. In each case we test
whether the laws of geometry work. If they don’t work, we say that
our space is curved. If we lay out a big triangle and the sum of its
angles exceeds 180 degrees, we can say our space is curved. Or if
the measured radius of a circle is not equal to its circumference over
2π, we can say our space is curved.

You will notice that in three dimensions the situation can be
much more complicated than in two. At any one place in two di-
mensions there is a certain amount of curvature. But in three di-
mensions there can be several components to the curvature. If we lay
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out a triangle in some plane, we may get a different answer than if
we orient the plane of the triangle in a different way. Or take the
example of a circle. Suppose we draw a circle and measure the ra-
dius and it doesn’t check with C/2π so that there is some excess ra-
dius. Now we draw another circle at right angles—as in Figure
6-15. There’s no need for the excess to be exactly the same for both
circles. In fact, there might be a positive excess for a circle in one
plane, and a defect (negative excess) for a circle in the other plane.

Perhaps you are thinking of a better idea: Can’t we get around
all of these components by using a sphere in three dimensions? We
can specify a sphere by taking all the points that are the same dis-
tance from a given point in space. Then we can measure the surface
area by laying out a fine-scale rectangular grid on the surface of the
sphere and adding up all the bits of area. According to Euclid the
total area A is supposed to be 4π times the square of the radius; so
we can define a “predicted radius” as . But we can also mea-
sure the radius directly by digging a hole to the center and measur-
ing the distance. Again, we can take the measured radius minus the
predicted radius and call the difference the radius excess.

,

which would be a perfectly satisfactory measure of the curvature.

4
r r measured area

excess meas

/1 2

r
= - c m

/4A r

Figure 6-15 The excess radius may be different for circles with different
orientations.
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It has the great advantage that it doesn’t depend upon how we ori-
ent a triangle or a circle.

But the excess radius of a sphere also has a disadvantage: it
doesn’t completely characterize the space. It gives what is called the
mean curvature of the three-dimensional world, since there is an
averaging effect over the various curvatures. Since it is an average,
however, it does not solve completely the problem of defining the
geometry. If you know only this number you can’t predict all prop-
erties of the geometry of the space, because you can’t tell what
would happen with circles of different orientation. The complete
definition requires the specification of six “curvature numbers” at
each point. Of course the mathematicians know how to write all
those numbers. You can read someday in a mathematics book how
to write them all in a high-class and elegant form, but it is first a
good idea to know in a rough way what it is that you are trying to
write about. For most of our purposes the average curvature will
be enough.*

6-3 Our space is curved
Now comes the main question. Is it true? That is, is the actual phys-
ical three-dimensional space we live in curved? Once we have
enough imagination to realize the possibility that space might be
curved, the human mind naturally gets curious about whether the
real world is curved or not. People have made direct geometrical
measurements to try to find out, and haven’t found any deviations.

* We should mention one additional point for completeness. If you want to carry
the hot-plate model of curved space over into three dimensions you must imagine
that the length of the ruler depends not only on where you put it, but also on
which orientation the ruler has when it is laid down. It is a generalization of the
simple case in which the length of the ruler depends on where it is, but is the same
if set north-south, or east-west, or up-down. This generalization is needed if you
want to represent a three-dimensional space with any arbitrary geometry with
such a model, although it happens not to be necessary for two dimensions.
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On the other hand, by arguments about gravitation, Einstein dis-
covered that space is curved, and we’d like to tell you what Einstein’s
law is for the amount of curvature, and also tell you a little bit about
how he found out about it.

Einstein said that space is curved and that matter is the source
of the curvature. (Matter is also the source of gravitation, so gravity
is related to the curvature—but that will come later in the chapter.)
Let us suppose, to make things a little easier, that the matter is dis-
tributed continuously with some density, which may vary, however,
as much as you want from place to place.* The rule that Einstein
gave for the curvature is the following: If there is a region of space
with matter in it and we take a sphere small enough that the density
ρ of matter inside it is effectively constant, then the radius excess
for the sphere is proportional to the mass inside the sphere. Using
the definition of excess radius, we have 

. (6.3) 

Here, G is the gravitational constant (of Newton’s theory), c is the
velocity of light, and M = 4πρr 3/3 is the mass of the matter inside
the sphere. This is Einstein’s law for the mean curvature of space.

Suppose we take the earth as an example and forget that the den-
sity varies from point to point—so we won’t have to do any integrals.
Suppose we were to measure the surface of the earth very carefully,
and then dig a hole to the center and measure the radius. From the
surface area we could calculate the predicted radius we would get
from setting the area equal to 4πr2. When we compared the predicted
radius with the actual radius, we would find that the actual radius
exceeded the predicted radius by the amount given in Eq. (6.3). The
constant G/3c2 is about 2.5 # 10–29 cm per gram, so for each gram
of material the measured radius is off by 2.5 # 10–29cm. Putting in
the mass of the earth, which is about 6 # 1027 grams, it turns out

r A
c

G M4 3
Radius excess meas 2r

= - = $

* Nobody—not even Einstein—knows how to do it if mass comes concentrated
at points.
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that the earth has 1.5 millimeters more radius than it should have
for its surface area.* Doing the same calculation for the sun, you
find that the sun’s radius is one-half a kilometer too long.

You should note that the law says that the average curvature
above the surface area of the earth is zero. But that does not mean
that all the components of the curvature are zero. There may still
be—and, in fact, there is—some curvature above the earth. For a
circle in a plane there will be an excess radius of one sign for some
orientations and of the opposite sign for other orientations. It just
turns out that the average over a sphere is zero when there is no
mass inside it. Incidentally, it turns out that there is a relation be-
tween the various components of the curvature and the variation
of the average curvature from place to place. So if you know the
average curvature everywhere, you can figure out the details of the
curvature components at each place. The average curvature inside
the earth varies with altitude, and this means that some curvature
components are nonzero both inside the earth and outside. It is
that curvature that we see as a gravitational force.

Suppose we have a bug on a plane, and suppose that the “plane”
has little pimples in the surface. Wherever there is a pimple the bug
would conclude that his space has little local regions of curvature.
We have the same thing in three dimensions. Wherever there is a
lump of matter, our three-dimensional space has a local curvature—
a kind of three-dimensional pimple.

If we make a lot of bumps on a plane there might be an overall
curvature besides all the pimples—the surface might become like
a ball. It would be interesting to know whether our space has a
net average curvature as well as the local pimples due to the lumps
of matter like the earth and the sun. The astrophysicists have been
trying to answer that question by making measurements of galax-
ies at very large distances. For example, if the number of galaxies
we see in a spherical shell at a large distance is different from what

* Approximately, because the density is not independent of radius as we are
assuming.
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we would expect from our knowledge of the radius of the shell,
we would have a measure of the excess radius of a tremendously
large sphere. From such measurements it is hoped to find out
whether our whole universe is flat on the average, or round—
whether it is “closed,” like a sphere, or “open,” like a plane. You
may have heard about the debates that are going on about this
subject. There are debates because the astronomical measurements
are still completely inconclusive; the experimental data are not
precise enough to give a definite answer. Unfortunately, we don’t
have the slightest idea about the overall curvature of our universe
on a large scale.

6-4 Geometry in space-time
Now we have to talk about time. As you know from the special
theory of relativity, measurements of space and measurements of
time are interrelated. And it would be kind of crazy to have some-
thing happening to the space, without the time being involved in
the same thing. You will remember that the measurement of time
depends on the speed at which you move. For instance, if we watch
a guy going by in a spaceship we see that things happen more slowly
for him than for us. Let’s say he takes off on a trip and returns in
100 seconds flat by our watches; his watch might say that he had
been gone for only 95 seconds. In comparison with ours, his
watch—and all other processes, like his heartbeat—have been run-
ning slow.

Now let’s consider an interesting problem. Suppose you are the
one in the spaceship. We ask you to start off at a given signal and
return to your starting place just in time to catch a later signal—
at, say, exactly 100 seconds later according to our clock. And you
are also asked to make the trip in such a way that your watch will
show the longest possible elapsed time. How should you move? You
should stand still. If you move at all your watch will read less than
100 seconds when you get back.
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Suppose, however, we change the problem a little. Suppose we
ask you to start at point A on a given signal and go to point B (both
fixed relative to us), and to do it in such a way that you arrive back
just at the time of a second signal (say 100 seconds later according
to our fixed clock). Again you are asked to make the trip in the way
that lets you arrive with the latest possible reading on your watch.
How would you do it? For which path and schedule will your watch
show the greatest elapsed time when you arrive? The answer is that
you will spend the longest time from your point of view if you make
the trip by going at a uniform speed along a straight line. Reason:
Any extra motions and any extra-high speeds will make your clock
go slower. (Since the time deviations depend on the square of the
velocity, what you lose by going extra fast at one place you can never
make up by going extra slowly in another place.)

The point of all this is that we can use the idea to define “a
straight line” in space-time. The analog of a straight line in space is
for space-time a motion at uniform velocity in a constant direction.

The curve of shortest distance in space corresponds in space-
time not to the path of shortest time, but to the one of longest time,
because of the funny things that happen to signs of the t-terms in
relativity. “Straight-line” motion—the analog of “uniform velocity
along a straight line”—is then that motion which takes a watch
from one place at one time to another place at another time in the
way that gives the longest time reading for the watch. This will be
our definition for the analog of a straight line in space-time.

6-5 Gravity and the principle of equivalence
Now we are ready to discuss the laws of gravitation. Einstein was
trying to generate a theory of gravitation that would fit with the
relativity theory that he had developed earlier. He was struggling
along until he latched on to one important principle which guided
him into getting the correct laws. That principle is based on the
idea that when a thing is falling freely everything inside it seems
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weightless. For example, a satellite in orbit is falling freely in the
earth’s gravity, and an astronaut in it feels weightless. This idea,
when stated with greater precision, is called Einstein’s principle of
equivalence. It depends on the fact that all objects fall with exactly
the same acceleration no matter what their mass, or what they are
made of. If we have a spaceship that is “coasting”—so it’s in a free
fall—and there is a man inside, then the laws governing the fall of
the man and the ship are the same. So if he puts himself in the mid-
dle of the ship he will stay there. He doesn’t fall with respect to the
ship. That’s what we mean when we say he is “weightless.”

Now suppose you are in a rocket ship which is accelerating. Ac-
celerating with respect to what? Let’s just say that its engines are on
and generating a thrust so that it is not coasting in a free fall. Also
imagine that you are way out in empty space so that there are prac-
tically no gravitational forces on the ship. If the ship is accelerating
with “lg” you will be able to stand on the “floor” and will feel your
normal weight. Also if you let go of a ball, it will “fall” toward the
floor. Why? Because the ship is accelerating “upward,” but the ball
has no forces on it, so it will not accelerate; it will get left behind.
Inside the ship the ball will appear to have a downward acceleration
of “lg.”

Now let’s compare that with the situation in a spaceship sitting
at rest on the surface of the earth. Everything is the same! You would
be pressed toward the floor, a ball would fall with an acceleration
of lg, and so on. In fact, how could you tell inside a spaceship
whether you are sitting on the earth or are accelerating in free space?
According to Einstein’s equivalence principle there is no way to tell
if you only make measurements of what happens to things inside!

To be strictly correct, that is true only for one point inside the
ship. The gravitational field of the earth is not precisely uniform,
so a freely falling ball has a slightly different acceleration at different
places—the direction changes and the magnitude changes. But if
we imagine a strictly uniform gravitational field, it is completely
imitated in every respect by a system with a constant acceleration.
That is the basis of the principle of equivalence.
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6-6 The speed of clocks in a gravitational field
Now we want to use the principle of equivalence for figuring out a
strange thing that happens in a gravitational field. We’ll show you
something that happens in a rocket ship which you probably
wouldn’t have expected to happen in a gravitational field. Suppose
we put a clock at the “head” of the rocket ship—that is, at the
“front” end—and we put another identical clock at the “tail,” as in
Figure 6-16. Let’s call the two clocks A and B. If we compare these
two clocks when the ship is accelerating, the clock at the head seems

Figure 6-16 An accelerating rocket ship with two clocks.
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to run fast relative to the one at the tail. To see that, imagine that
the front clock emits a flash of light each second, and that you are
sitting at the tail comparing the arrival of the light flashes with the
ticks of clock B. Let’s say that the rocket is in the position a of Fig-
ure 6-17 when clock A emits a flash, and at the position b when
the flash arrives at clock B. Later on, the ship will be at position c
when the clock A emits its next flash, and at position d when you
see it arrive at clock B.

The first flash travels the distance L1 and the second flash travels
the shorter distance L2. It is a shorter distance because the ship is
accelerating and has a higher speed at the time of the second flash.
You can see, then, that if the two flashes were emitted from clock
A one second apart, they would arrive at clock B with a separation
somewhat less than one second, since the second flash doesn’t spend
as much time on the way. The same thing will also happen for all
the later flashes. So if you were sitting in the tail you would con-
clude that clock A was running faster than clock B. If you were to
do the same thing in reverse—letting clock B emit light and ob-
serving it at clock A—you would conclude that B was running

Figure 6-17 A clock at the head of an accelerating rocket ship appears
to run faster than a clock at the tail.
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slower than A. Everything fits together and there is nothing myste-
rious about it all.

But now let’s think of the rocket ship at rest in the earth’s gravity.
The same thing happens. If you sit on the floor with one clock and
watch another one which is sitting on a high shelf, it will appear to
run faster than the one on the floor! You say, “But that is wrong.
The times should be the same. With no acceleration there’s no rea-
son for the clocks to appear to be out of step.” But they must if the
principle of equivalence is right. And Einstein insisted that the prin-
ciple was right, and went courageously and correctly ahead. He pro-
posed that clocks at different places in a gravitational field must
appear to run at different speeds. But if one always appears to be
running at a different speed with respect to the other, then so far
as the first is concerned the other is running at a different rate.

But now you see we have the analog for clocks of the hot ruler
we were talking about earlier, when we had the bug on a hot plate.
We imagined that rulers and bugs and everything changed lengths
in the same way at various temperatures so they could never tell
that their measuring sticks were changing as they moved around
on the hot plate. It’s the same with clocks in a gravitational field.
Every clock we put at a higher level is seen to go faster. Heartbeats
go faster, all processes run faster.

If they didn’t you would be able to tell the difference between a
gravitational field and an accelerating reference system. The idea
that time can vary from place to place is a difficult one, but it is
the idea Einstein used, and it is correct—believe it or not.

Using the principle of equivalence we can figure out how much
the speed of a clock changes with height in a gravitational field. We
just work out the apparent discrepancy between the two clocks in
the accelerating rocket ship. The easiest way to do this is to use the
result we found in Chapter 34 of Vol. I* for the Doppler effect.
There, we found—see Eq. (34.14)*—that if v is the relative velocity

*of The Feynman Lectures on Physics.
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of a source and a receiver, the received frequency ω is related to the
emitted frequency ω0 by

. (6.4)

Now if we think of the accelerating rocket ship in Figure 6-17 the
emitter and receiver are moving with equal velocities at any one in-
stant. But in the time that it takes the light signals to go from clock
A to clock B the ship has accelerated. It has, in fact, picked up the
additional velocity gt, where g is the acceleration and t is time it
takes light to travel the distance H from A to B. This time is very
nearly H/c. So when the signals arrive at B, the ship has increased
its velocity by gH/c. The receiver always has this velocity with respect
to the emitter at the instant the signal left it. So this is the velocity
we should use in the Doppler shift formula, Eq. (6.4). Assuming
that the acceleration and the length of the ship are small enough
that this velocity is much smaller than c, we can neglect the term
in v2/c2. We have that

. (6.5)

So for the two clocks in the spaceship we have the relation 

(Rate at the receiver) = (Rate of emission ) , (6.6)

where H is the height of the emitter above the receiver.
From the equivalence principle the same result must hold for two

clocks separated by the height H in a gravitational field with the free
fall acceleration g.

This is such an important idea we would like to demonstrate that
it also follows from another law of physics—from the conservation
of energy. We know that the gravitational force on an object is pro-
portional to its mass M, which is related to its total internal energy
E by M = E/c2. For instance, the masses of nuclei determined from
the energies of nuclear reactions which transmute one nucleus into
another agree with the masses obtained from atomic weights.

c
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Now think of an atom which has a lowest energy state of total
energy E0 and a higher energy state E1, and which can go from the
state E1 to the state E0 by emitting light. The frequency ω of the
light will be given by

ħω = E1 – E0. (6.7)

Now suppose we have such an atom in the state E1 sitting on
the floor, and we carry it from the floor to the height H. To do that
we must do some work in carrying the mass m1 = E1/c2 up against
the gravitational force. The amount of work done is

. (6.8)

Then we let the atom emit a photon and go into the lower energy
state E0. Afterward we carry the atom back to the floor. On the re-
turn trip the mass is E0/c2; we get back the energy 

, (6.9)

so we have done a net amount of work equal to

. (6.10)

When the atom emitted the photon it gave up the energy E1 – E0.
Now suppose that the photon happened to go down to the floor
and be absorbed. How much energy would it deliver there? You
might at first think that it would deliver just the energy E1 – E0.
But that can’t be right if energy is conserved, as you can see from
the following argument. We started with the energy E1 at the floor.
When we finish, the energy at the floor level is the energy E0 of the
atom in its lower state plus the energy Eph received from the photon.
In the meantime we have had to supply the additional energy ΔU
of Eq. (6.10). If energy is conserved, the energy we end up with at
the floor must be greater than we started with by just the work we
have done. Namely, we must have that

c
E gH2

1

c
E gH2
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U
c

E E gH2
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-
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Eph + E0 = E1 + ΔU,
or (6.11)

Eph = (E1 – E0) + ΔU.

It must be that the photon does not arrive at the floor with just the
energy E1 – E0 it started with, but with a little more energy. Other-
wise some energy would have been lost. If we substitute in Eq.
(6.11) the ΔU we got in Eq. (6.10), we get that the photon arrives
at the floor with the energy

. (6.12)

But a photon of energy Eph has the frequency ω = Eph/ћ. Calling
the frequency of the emitted photon ω0—which is by Eq. (6.7)
equal to (E1 – E0)/ћ—our result in Eq. (6.12) gives again the rela-
tion of (6.5) between the frequency of the photon when it is ab-
sorbed on the floor and the frequency with which it was emitted.

The same result can be obtained in still another way. A photon
of frequency ω0 has the energy E0 = ћω0. Since the energy E0 has
the gravitational mass E0/c2 the photon has a mass (not rest mass)
ћω0/c2, and is “attracted” by the earth. In falling the distance H it
will gain an additional energy (ћω0/c2)gH, so it arrives with the
energy

.

But its frequency after the fall is E/ћ, giving again the result in Eq.
(6.5). Our ideas about relativity, quantum physics, and energy con-
servation all fit together only if Einstein’s predictions about clocks
in a gravitational field are right. The frequency changes we are talk-
ing about are normally very small. For instance, for an altitude dif-
ference of 20 meters at the earth’s surface the frequency difference
is only about two parts in 1015. However, just such a change has
recently been found experimentally using the Mössbauer effect.*
Einstein was perfectly correct.

( )E E E
c

gH
1ph 1 0 2= - +c m

E
c

gH
10 2'~= +c m

* R. V. Pound and G. A. Rebka, Jr., Physical Review Letters, vol. 4, p. 337 (1960).
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6-7 The curvature of space-time
Now we want to relate what we have just been talking about to
the idea of curved space-time. We have already pointed out that if
the time goes at different rates in different places, it is analogous
to the curved space of the hot plate. But it is more than an analogy;
it means that space-time is curved. Let’s try to do some geometry
in space-time. That may at first sound peculiar, but we have often
made diagrams of space-time with distance plotted along one axis
and time along the other. Suppose we try to make a rectangle in
space-time. We begin by plotting a graph of height H versus t as
in Figure 6-18(a). To make the base of our rectangle we take an
object which is at rest at the height H1 and follow its world line
for 100 seconds. We get the line BD in part (b) of the figure which
is parallel to the t-axis. Now let’s take another object which is 100
feet above the first one at t = 0. It starts at the point A in Figure
6-18(c). Now we follow its world line for 100 seconds as measured
by a clock at A. The object goes from A to C, as shown in part (d)
of the figure. But notice that since time goes at a different rate at
the two heights—we are assuming that there is a gravitational
field—the two points C and D are not simultaneous. If we try to
complete the square by drawing a line to the point C' which is 100
feet above D at the same time, as in Figure 6-18(e), the pieces don’t
fit. And that’s what we mean when we say that space-time is
curved.

6-8 Motion in curved space-time
Let’s consider an interesting little puzzle. We have two identical
clocks, A and B, sitting together on the surface of the earth as in
Figure 6-19. Now we lift clock A to some height H, hold it there
awhile, and return it to the ground so that it arrives at just the in-
stant when clock B has advanced by 100 seconds. Then clock A
will read something like 107 seconds, because it was running faster
when it was up in the air. Now here is the puzzle. How should we
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move clock A so that it reads the latest possible time—always as-
suming that it returns when B reads 100 seconds? You say, “That’s
easy. Just take A as high as you can. Then it will run as fast as pos-
sible, and be the latest when you return.” Wrong. You forgot some-
thing—we’ve only got 100 seconds to go up and back. If we go
very high, we have to go very fast to get there and back in 100 sec-
onds. And you mustn’t forget the effect of special relativity which
causes moving clocks to slow down by the factor . This
relativity effect works in the direction of making clock A read less

/v c1 2 2-

Figure 6-18 Trying to make a rectangle in space-time.

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 138



139

Curved Space

time than clock B. You see that we have a kind of game. If we stand
still with clock A we get 100 seconds. If we go up slowly to a small
height and come down slowly we can get a little more than 100
seconds. If we go a little higher, maybe we can gain a little more.
But if we go too high we have to move fast to get there, and we
may slow down the clock enough that we end up with less than
100 seconds. What program of height versus time—how high to
go and with what speed to get there, carefully adjusted to bring us
back to clock B when it has increased by 100 seconds—will give
us the largest possible time reading on clock A?

Answer: Find out how fast you have to throw a ball up into the
air so that it will fall back to earth in exactly 100 seconds. The ball’s
motion—rising fast, slowing down, stopping, and coming back
down—is exactly the right motion to make the time the maximum
on a wristwatch strapped to the ball.

Now consider a slightly different game. We have two points A
and B both on the earth’s surface at some distance from one an-
other. We play the same game that we did earlier to find what we
call the straight line. We ask how we should go from A to B so that
the time on our moving watch will be the longest—assuming we
start at A on a given signal and arrive at B on another signal at B
which we will say is 100 seconds later by a fixed clock. Now you
say, “Well, we found out before that the thing to do is to coast along

Figure 6-19 In a uniform gravitational field the trajectory with the
maximum proper time for a fixed elapsed time is a
parabola. 
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a straight line at a uniform speed chosen so that we arrive at B ex-
actly 100 seconds later. If we don’t go along a straight line it takes
more speed, and our watch is slowed down.” But wait! That was
before we took gravity into account. Isn’t it better to curve upward
a little bit and then come down? Then during part of the time we
are higher up and our watch will run a little faster? It is, indeed. If
you solve the mathematical problem of adjusting the curve of the
motion so that the elapsed time of the moving watch is the most
it can possibly be, you will find that the motion is a parabola—
the same curve followed by something that moves on a free ballistic
path in the gravitational field, as in Figure 6-19. Therefore the law
of motion in a gravitational field can also be stated: An object al-
ways moves from one place to another so that a clock carried on it
gives a longer time than it would on any other possible trajectory—
with, of course, the same starting and finishing conditions. The
time measured by a moving clock is often called its “proper time.”
In free fall, the trajectory makes the proper time of an object a
maximum.

Let’s see how this all works out. We begin with Eq. (6.5) which
says that the excess rate of the moving watch is

. (6.13)

Besides this, we have to remember that there is a correction of the
opposite sign for the speed. For this effect we know that

.

Although the principle is valid for any speed, we take an example
in which the speeds are always much less than c. Then we can write
this equation as 

ω = ω0(1 – v2/2c2),

and the defect in the rate of our clock is

. (6.14)
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Combining the two terms in (6.13) and (6.14) we have that

. (6.15)

Such a frequency shift of our moving clock means that if we mea-
sure a time dt on a fixed clock, the moving clock will register the
time

. (6.16)

The total time excess over the trajectory is the integral of the extra
term with respect to time, namely 

, (6.17)

which is supposed to be a maximum.
The term gH is just the gravitational potential f. Suppose we mul-

tiply the whole thing by a constant factor –mc2, where m is the mass
of the object. The constant won’t change the condition for the max-
imum, but the minus sign will just change the maximum to a min-
imum. Equation (6.16) then says that the object will move so that

a minimum. (6.18) 

But now the integrand is just the difference of the kinetic and po-
tential energies. And if you look in Chapter 19 of Volume II* you
will see that when we discussed the principle of least action we
showed that Newton’s laws for an object in any potential could be
written exactly in the form of Eq. (6.18).

6-9 Einstein’s theory of gravitation
Einstein’s form of the equations of motion—that the proper time
should be a maximum in curved space-time—gives the same results
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* of The Feynman Lectures on Physics.
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as Newton’s laws for low velocities. As he was circling around the
earth, Gordon Cooper’s watch was reading later than it would have
in any other path you could have imagined for his satellite.*

So the law of gravitation can be stated in terms of the ideas of
the geometry of space-time in this remarkable way. The particles
always take the longest proper time—in space-time a quantity anal-
ogous to the “shortest distance.” That’s the law of motion in a grav-
itational field. The great advantage of putting it this way is that the
law doesn’t depend on any coordinates, or any other way of defining
the situation.

Now let’s summarize what we have done. We have given you two
laws for gravity:

(1) How the geometry of space-time changes when matter is
present—namely, that the curvature expressed in terms of
the excess radius is proportional to the mass inside a sphere,
Eq. (6.3).

(2) How objects move if there are only gravitational forces—
namely, that objects move so that their proper time between
two end conditions is a maximum.

Those two laws correspond to similar pairs of laws we have seen
earlier. We originally described motion in a gravitational field in
terms of Newton’s inverse square law of gravitation and his laws of
motion. Now laws (1) and (2) take their places. Our new pair of
laws also correspond to what we have seen in electrodynamics.
There we had our law—the set of Maxwell’s equations—which de-
termines the fields produced by charges. It tells how the character
of “space” is changed by the presence of charged matter, which is
what law (1) does for gravity. In addition, we had a law about how
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* Strictly speaking it is only a local maximum. We should have said that the proper
time is larger than for any nearby path. For example, the proper time on an ellip-
tical orbit around the earth need not be longer than on a ballistic path of an object
which is shot to a great height and falls back down.

0465025268-Feynman_Layout 1  2/3/11  3:32 PM  Page 142



particles move in the given fields—d(mv)/dt = q(E + v# B). This,
for gravity, is done by law (2).

In the laws (1) and (2) you have a precise statement of Einstein’s
theory of gravitation—although you will usually find it stated in a
more complicated mathematical form. We should, however, make
one further addition. Just as time scales change from place to place
in a gravitational field, so do the length scales. Rulers change
lengths as you move around. It is impossible with space and time
so intimately mixed to have something happen with time that isn’t
in some way reflected in space. Take even the simplest example:
You are riding past the earth. What is “time” from your point of
view is partly space from our point of view. So there must also be
changes in space. It is the entire space-time which is distorted by
the presence of matter, and this is more complicated than a change
only in time scale. However, the rule that we gave in Eq. (6-3) is
enough to determine completely all the laws of gravitation, pro-
vided that it is understood that this rule about the curvature of
space applies not only from one man’s point of view but is true for
everybody. Somebody riding by a mass of material sees a different
mass content because of the kinetic energy he calculates for its mo-
tion past him, and he must include the mass corresponding to that
energy. The theory must be arranged so that everybody—no matter
how he moves—will, when he draws a sphere, find that the excess
radius is G/3c2 times the total mass (or, better, G/3c4 times the total
energy content) inside the sphere. That this law—law (1)—should
be true in any moving system is one of the great laws of gravitation,
called Einstein’s field equation. The other great law is (2)—that
things must move so that the proper time is a maximum—and is
called Einstein’s equation of motion.

To write these laws in a complete algebraic form, to compare
them with Newton’s laws, or to relate them to electrodynamics is
difficult mathematically. But it is the way our most complete laws
of the physics of gravity look today.

Although they gave a result in agreement with Newton’s me-
chanics for the simple example we considered, they do not always
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do so. The three discrepancies first derived by Einstein have been
experimentally confirmed: the orbit of Mercury is not a fixed el-
lipse; starlight passing near the sun is deflected twice as much as
you would think; and the rates of clocks depend on their location
in a gravitational field. Whenever the predictions of Einstein have
been found to differ from the ideas of Newtonian mechanics, Na-
ture has chosen Einstein’s.

Let’s summarize everything that we have said in the following
way. First, time and distance rates depend on the place in space you
measure them and on the time. This is equivalent to the statement
that space-time is curved. From the measured area of a sphere we
can define a predicted radius, , but the actual measured ra-
dius will have an excess over this which is proportional (the con-
stant is G/c2) to the total mass contained inside the sphere. This
fixes the exact degree of the curvature of space-time. And the cur-
vature must be the same no matter who is looking at the matter or
how it is moving. Second, particles move on “straight lines” (tra-
jectories of maximum proper time) in this curved space-time. This
is the content of Einstein’s formulation of the laws of gravitation.

/4A r
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I N D E X
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Acceleration vector, 15–  18
Affective future, 100, 101
Affective past, 100
Angular momentum,

conservation of, 29
Angular orientation, and physical

laws, 6– 8
Antiatoms, 44
Antimatter, 43– 46
Antineutrons, 44
Antiparticles, 44
Antiprotons ( ), 44 
Atomic bomb, energy of, 89– 90
Atoms

anti-atoms of, 44
conservation of energy and,

134– 136
mass at rest, 89– 90
reversibility in time and, 29
scale of, 27

Axial vectors, 35– 38

Beta decay, 40– 43, 45
Billiard bills, collision of, 51– 52

Centrifugal force, 76
Challenger (space shuttle), xix, xvi
Clocks

slowing in moving system,
59– 62

speed in gravitational field,
131– 136, 140– 141

Cobalt, 41– 42, 45
Collision, analysis of, 83– 88, 105

inelastic, 87– 88, 89
Conservation laws

energy, conservation of. See
Energy, conservation of

four-vectors, 106– 107
mass, conservation of, 88, 89
momentum, conservation of.

See Momentum,
conservation of

parity, conservation of, 40– 43
symmetry and, 29– 30

Conspiracy as law of nature,
complete, 58

Current time (space-time region),
99– 101

Curved space (curvature),
111– 144

defined, 117, 120, 122, 123,
125

Einstein’s law for, 126– 128
geometry of, 117– 125,

128– 129

p-
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Curved space (curvature)
(continued )

intrinsic, 122– 123
mean, 125, 126– 127
negative, 121– 122, 124
numbers, 125
positive, 121– 122, 124
space-time geometry and,

128– 129
three-dimensional, 123– 125
two-dimensional, 111– 123

Cylinders, curvature of, 122– 123

Directed quantities, 10
Direction

effect of, 5. See also Rotation
of vectors, 20– 21

Displacement, 10
Doppler effect, 109, 133– 134
Dot products (vectors), 19– 21,

107– 108
Dyson, Freeman, x

Earth, velocity of, 53, 54– 59
Einstein, Albert

curved space-time laws, xiv,
xv, 111, 123, 126– 128

equivalence principle,
129– 136

field equation, xvi, 143– 144
gravitation theory, 129,

141– 144
Lorentz transformation and,

54
motion, equation of, 143– 144
relativity theories, ix, xii, xiii,

xv– xvi, 50, 55, 66, 68– 69,
73, 79

Electrical charge, conservation of,
30

Electricity
laws of, 40
theories of relativity and, 52

Electrodynamics, Maxwell’s laws
of, xii– xiii, 52– 54, 75, 142

Electron volts, energy measured
in, 103

Electrons, 43– 44, 71
Energy

conservation of, 29, 89, 107,
134– 136

equivalence of mass and, xvi,
68– 71, 102– 103,

of photon, 108– 109
relativistic, xvi, 88– 91
as time component of vectors,

102– 105
total energy of particle, 91
vector analysis, 20
velocity, momentum and

total, 91
Equivalence, Einstein’s principle

of, 129– 136
Euclid, 124
Event, in space-time, 95

Feynman, Richard, 153– 154
as scientist, ix– xvi
as teacher, ix, xix– xxiii

Feynman Lectures on Physics, The,
xi

Feynman’s Preface, xxv– xxix
Special Preface, xix– xxiii

Force
Newton’s law on momentum

and, 66
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rotation and, 7– 8
vector analysis, 10, 11– 12, 16

Foucault pendulum, 28, 76
Four-vector momentum, 105
Four-vectors, xiv– xv, 65– 66,

102– 109
Future (time-like interval),

99– 100, 101

Galilean transformation, 52, 53,
54

Galileo, xii– xiii, 27– 28
Gamma (τ)-meson, 40
General Theory of Relativity, xv,

50
Geographical differences, effect

on physical laws of, 25
Geometry

of curved space, 117– 125,
128– 129

of space-time. See Space-time
Gravitation, laws of

change of scale, effect of, 27
Einstein’s theory of, 141– 144
equivalence principle and,

129– 136
Newton’s laws of, 111, 142
reflection symmetry in, 40

Gravitational field
motion law in, 140, 141– 144
speed of clocks in, 131– 136,

140– 141

Huygens, Christian, 51

Inelastic collision, 87– 88, 89
Inertia, 67, 88
Intervals, space-time, 97– 99

Invariance. See Symmetry
Invariant. See Scalar

Kinetic energy, 20, 68– 69, 88– 91
K-mesons, 91

Least action, principle of, 141
Left-handedness, 31– 39
Leighton, Robert B., xi
Light

distance measured by speed of,
98

photon of, 108– 109
representation in space-time,

96, 98
velocity of, xiii, 52– 53,

56– 57, 75, 98, 100
wavelength of, variations in,

27
Lorentz, Hendrik Antoon, xii,

xiii, xv, 58
Lorentz transformation

consequences of, 79– 83
contraction, 63
laws of mechanics under, 66
as rotation in time and space,

65– 66, 102, 105
simultaneity, 63– 64
space-time relationships

implied by, 93– 95, 98
twin paradox, 77– 79

Magnetic fields
cobalt experiment, 41– 42, 45
electromagnetic field,

Maxwell’s equations of. See
Electrodynamics, Maxwell’s
laws of
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Magnetic fields (continued )
geographical differences, effect

of, 25
poles and reflection symmetry,

36– 38, 41– 42, 45
Magnetism

laws of, 40
principle of relativity and, 52

Mass
of colliding objects, 83– 88
conservation of, 88, 89
equivalence of energy and, xvi,

68– 71, 102– 103
in motion, 91
relativity of, xvi, 49– 50,

66– 68, 83– 88
rest, 49, 89– 90, 91
rest mass equaling zero,

108– 109
temperature increase and, 68
variation with speed, 69

Matter, and antimatter, 43– 46
Maxwell, James Clerk. See

Electrodynamics, Maxwell’s
laws of

Mechanics, laws of
equations, 2– 3
Lorentz transformation, effect

of, 66
Michelson-Morley experiment,

54– 59, 60, 63
Minkowski, Hermann, xiv– xv
Mirror reflections. See Reflection

symmetry
Momentum, 10, 20

conservation of, 29, 52, 66,
85– 88, 106– 107

four-vector, 105
as function of velocity, 84

Newton’s law on force and, 66
of photon, 108– 109
speed, variation with, 66– 67
three-vector, 105, 106
transverse, 82– 83, 85– 88, 105
vector components, 102– 105
velocity, total energy and, 91

Mössbauer effect, 136
Motion. See also Velocity 

absolute, 75– 76
in curved space-time,

137– 141
Einstein’s equation of, 141,

143– 144
of translation, uniform, 73
vertical component of, 82– 83,

105
Motion, laws of, 50– 51

gravitational field, law of
motion in, 140– 144

Newton’s laws, 111
Mu-mesons (muons), 62, 78– 79

Neutrons, 44
Newton’s laws, 3, 4, 5, 8– 9

force as rate of change of
momentum, 66

invariance of, 9, 16
least action, principle of, 141
of motion, 111
principle of relativity and,

xii– xiii, 50– 51, 54, 66– 68,
75, 77, 79, 89

Second Law, 49
of universal gravitation, 111
in vector notation, 15– 18

Nuclear forces, 40, 46

Ordinary quantity, 10
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Parity, conservation of, 40– 43
failure of, 42– 43

Past (time-like interval), 99– 100
Philosophers, and relativity,

73– 77
Photons, 108– 109, 135– 136
Physics, laws of. See also specific

laws, e.g. Conservation laws
change of scale, effect of,

26– 28, 39
invariance of, 9, 16
reversibility in time of, 28– 29
symmetry of, 2– 3, 77
vector notation, 16

Planck’s constant, 108
Poincaré, Henri, xii, xiii, xv, 54,

58, 73
Polar vectors, 35– 38
Positrons, 43– 44, 71
Protons, 44, 46

Quantum mechanics, ix, xv, 29,
30

Reflection symmetry, xiv, 30– 35
antimatter and, 45
identification of right and left,

38– 39
polar and axial vectors, 35– 38

Relativity, See also Lorentz
transformation

addition of velocities in,
80– 82

energy, relativistic, xvi, 88– 91
General Theory of, xv, 50
of mass, xvi, 49– 50, 66– 68,

83– 88
Michelson and Morley

experiment, 54– 59, 60, 63

momentum, law of
conservation of, 107

philosophers and, 73– 77
principle of, 49– 53, 73, 75
relativistic dynamics, 66– 68
simultaneity, 63– 64
Special Theory of, ix, xv, 49– 71
time, transformation of, 59– 62

Right-handedness, 31– 39
Rotation

Lorentz transformation, 65
space-time measurements,

93– 94
symmetry and, xiv, 5– 9, 16,

25, 28, 29
uniform, 76

Sands, Matthew, xi, xxviii
Scalar, 10, 19
Scalar function, 19
Scalar product, 18– 21, 108
Scale, changes in, 26– 28, 39
Schrödinger equation, 33– 34
Schwinger, Julian, xxii
Seconds, measure of distance by,

98
Simultaneity, 63– 64, 101

failure at a distance, 64
Sound waves, speed of, 52
Space

curved. See Curved space
reflection in, 30– 35
rotation in, 25, 28, 29
space-time compared, 99
symmetry in, 24– 29

Space-like interval, 99– 100
Space-time

curvature of, xiv– xv, 111,
137– 141
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Space-time (continued )
events in, 95
geometry of, xiv– xv, 93– 97,

128– 129, 137, 142
intervals, 97– 99
ordinary space compared, 99
past, present, and future in,

99– 101
“straight line” in, 129

Special Theory of Relativity, ix,
xv, 49– 71, 128

Speed. See Velocity
Symmetry, xiii– xiv, 1– 2, 23– 47.

See also Vectors
antimatter, 43– 46
broken, 46– 47
conservation laws and, 29– 30
conservation of parity and,

40– 43
defined, 1, 24
operations, 23– 24
of physical laws, 77
polar and axial vectors, 35– 38
reflection. See Reflection

symmetry
rotation of axes, xiv, 5– 9, 16,

25, 28, 29
scale, effect of changes in,

26– 28, 39
in space and time, 24– 29
translational displacements,

2– 5
under uniform velocity in

straight line, 25– 26

Temperature
mass and, 68
as scalar, 10

Theta (Θ)-meson, 40

Three-dimensional curved space,
123– 125

Three-vectors, 102, 105, 106
Time. See also Space-time

curved, 111. See also Curved
space

displacement in, 25
reversibility in, 28– 29
symmetry in, 24– 29
transformation of, 59– 62
vector component, 65– 66,

102– 105
Time-like interval, 99– 100, 101
Tomanaga, Sin-Itero, xxii
Transformations. See also

Galilean transformation;
Lorentz transformation

four-vector momentum, 105
Translation, uniform motion of,

73
Translational displacements, 2– 5
Twin paradox, 77– 79
Two-dimensional curved space,

111– 123

Undirected quantity, 10
Unit vectors, 21
Upsilon (Y)-rays, 44
Uranium atom, 89– 90

Vector algebra, 12– 15
addition, 12– 13, 15
four-vector, 106– 109
multiplication, 13– 14, 15
subtraction, 14, 15, 16– 17

Vectors, xiv, 9– 12
acceleration, 15– 18
axial, 35– 38
components of, 10– 11
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defined, 10
direction of, 20– 21
four-vectors, xiv– xv, 65– 66,

102– 109
Newton’s laws in vector

notation, 15– 18
polar, 35– 38
properties of, 11– 21
scalar product of, 18– 21
symbol to mark, 10– 11
three-vectors, 102, 105, 106
time components, 65– 66,

102– 105
unit, 21
velocity, 14– 15, 16– 18, 102,

103
Velocity

absolute, 58, 74– 76
addition of velocities in

relativity, 80– 82
direction as property of, 10
of earth, 53, 54– 59

of light, xiii, 52– 53, 56– 57,
75, 98, 100

mass and, 49– 53, 69
momentum and, 66– 67, 84,

91
of sound waves, 52
total energy and, 91
transformation of, 79– 83
uniform, 76
vectors, 14– 15, 16– 18, 102,

103
vertical component of, 82– 83,

85– 88, 105

Waves
light, variations in length of,

27
sound, speed of, 52

Weak decay, 40– 43, 45
Weyl, Hermann, 1, 24
Work, 20, 88
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A B O U T  R I C H A R D  F E Y N M A N

Born in 1918 in Brooklyn, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important
part in the Manhattan Project at Los Alamos during World War II.
Subsequently, he taught at Cornell and at the California Institute
of Technology. In 1965 he received the Nobel Prize in Physics,
along with Sin-Itero Tomanaga and Julian Schwinger, for his work
in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving
problems with the theory of quantum electrodynamics. He also
created a mathematical theory that accounts for the phenomenon
of superfluidity in liquid helium. Thereafter, with Murray Gell-
Mann, he did fundamental work in the area of weak interactions
such as beta decay. In later years Feynman played a key role in the
development of quark theory by putting forward his parton model
of high-energy proton collision processes.

Beyond these achievements, Dr. Feynman introduced basic new
computational techniques and notations into physics, above all, the
ubiquitous Feynman diagrams that, perhaps more than any other
formalism in recent scientific history, have changed the way in
which basic physical processes are conceptualized and calculated.

Feynman was a remarkably effective educator. Of all his numer-
ous awards, he was especially proud of the Oersted Medal for
Teaching which he won in 1972. The Feynman Lectures on Physics,
originally published in 1963, were described by a reviewer in Sci-
entific American as “tough, but nourishing and full of flavor. After
25 years it is the guide for teachers and for the best of beginning
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students.” In order to increase the understanding of physics among
the lay public, Dr. Feynman wrote The Character of Physical Law
and QED: The Strange Theory of Light and Matter. He also authored
a number of advanced publications that have become classic refer-
ences and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on
the Challenger commission is well-known, especially his famous
demonstration of the susceptibility of the O-rings to cold, an ele-
gant experiment which required nothing more than a glass of ice
water. Less well-known were Dr. Feynman’s efforts on the Califor-
nia State Curriculum Committee in the 1960s where he protested
the mediocrity of textbooks.

A recital of Richard Feynman’s myriad scientific and educational
accomplishments cannot adequately capture the essence of the
man. As any reader of even his most technical publications knows,
Feynman’s lively and multisided personality shines through all his
work. Besides being a physicist, he was at various times a repairer
of radios, a picker of locks, an artist, a dancer, a bongo player, and
even a decipherer of Mayan hieroglyphics. Perpetually curious
about his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.
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